On local antimagic chromatic number of lexicographic product graphs

被引:0
作者
G.-C. Lau
W. C. Shiu
机构
[1] Universiti Teknologi MARA (Johor Branch,College of Computing, Informatics and Media
[2] Segamat Campus),Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
local antimagic chromatic number; lexicographic product; regular; disconnected; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a simple connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} of order p and size q. For a bijection f:E→{1,2,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : E \to \{1,2,\ldots,q\}$$\end{document}, let f+(u)=∑e∈E(u)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) = \sum_{e\in E(u)} f(e)$$\end{document} where E(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)$$\end{document} is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u)≠f+(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) \ne f^+(v)$$\end{document}. The minimum number of distinct values of f+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+$$\end{document} taken over all local antimagic labeling of G is denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)$$\end{document}. Let G[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[H]$$\end{document} be the lexicographic product of graphs G and H. In this paper, we obtain sharp upper bound for χla(G[On])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G[O_n])$$\end{document} where On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} is a null graph of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. Sufficient conditions for even regular bipartite and tripartite graphs G to have χla(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=3$$\end{document} are also obtained. Consequently, we successfully determined the local antimagic chromatic number of infinitely many (connected and disconnected) regular graphs that partially support the existence of an r-regular graph G of order p such that (i) χla(G)=χ(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)=k$$\end{document}, and (ii) χla(G)=χ(G)+1=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)+1=k$$\end{document} for each possible r,p,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,p,k$$\end{document}.
引用
收藏
页码:158 / 170
页数:12
相关论文
共 50 条
[41]   Connectivity of lexicographic product and direct product of graphs [J].
Yang, Chao ;
Xu, Jun-Ming .
ARS COMBINATORIA, 2013, 111 :3-12
[42]   Choosability and paintability of the lexicographic product of graphs [J].
Keszegh, Balazs ;
Zhu, Xuding .
DISCRETE APPLIED MATHEMATICS, 2017, 223 :84-90
[43]   The metric dimension of the lexicographic product of graphs [J].
Saputro, S. W. ;
Simanjuntak, R. ;
Uttunggadewa, S. ;
Assiyatun, H. ;
Baskoro, E. T. ;
Salman, A. N. M. ;
Baca, M. .
DISCRETE MATHEMATICS, 2013, 313 (09) :1045-1051
[44]   The metric dimension of the lexicographic product of graphs [J].
Jannesari, Mohsen ;
Omoomi, Behnaz .
DISCRETE MATHEMATICS, 2012, 312 (22) :3349-3356
[45]   Total Protection of Lexicographic Product Graphs [J].
Cabrera Martinez, Abel ;
Alberto Rodriguez-Velazquez, Juan .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) :967-984
[46]   The characteristic polynomial of lexicographic product of graphs [J].
Wang, Zhijun ;
Wong, Dein .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 :177-184
[47]   Double domination in lexicographic product graphs [J].
Cabrera Martinez, Abel ;
Cabrera Garcia, Suitberto ;
Rodriguez-Velazquez, J. A. .
DISCRETE APPLIED MATHEMATICS, 2020, 284 :290-300
[48]   On strong geodeticity in the lexicographic product of graphs [J].
Gajavalli, S. ;
Greeni, A. Berin .
AIMS MATHEMATICS, 2024, 9 (08) :20367-20389
[49]   On the fractional metric dimension of corona product graphs and lexicographic product graphs [J].
Feng, Min ;
Kong, Qian .
ARS COMBINATORIA, 2018, 138 :249-260
[50]   On the Roman domination in the lexicographic product of graphs [J].
Sumenjak, Tadeja Kraner ;
Pavlic, Polona ;
Tepeh, Aleksandra .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (13-14) :2030-2036