On local antimagic chromatic number of lexicographic product graphs

被引:0
作者
G.-C. Lau
W. C. Shiu
机构
[1] Universiti Teknologi MARA (Johor Branch,College of Computing, Informatics and Media
[2] Segamat Campus),Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
local antimagic chromatic number; lexicographic product; regular; disconnected; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a simple connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} of order p and size q. For a bijection f:E→{1,2,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : E \to \{1,2,\ldots,q\}$$\end{document}, let f+(u)=∑e∈E(u)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) = \sum_{e\in E(u)} f(e)$$\end{document} where E(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)$$\end{document} is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u)≠f+(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) \ne f^+(v)$$\end{document}. The minimum number of distinct values of f+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+$$\end{document} taken over all local antimagic labeling of G is denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)$$\end{document}. Let G[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[H]$$\end{document} be the lexicographic product of graphs G and H. In this paper, we obtain sharp upper bound for χla(G[On])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G[O_n])$$\end{document} where On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} is a null graph of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. Sufficient conditions for even regular bipartite and tripartite graphs G to have χla(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=3$$\end{document} are also obtained. Consequently, we successfully determined the local antimagic chromatic number of infinitely many (connected and disconnected) regular graphs that partially support the existence of an r-regular graph G of order p such that (i) χla(G)=χ(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)=k$$\end{document}, and (ii) χla(G)=χ(G)+1=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)+1=k$$\end{document} for each possible r,p,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,p,k$$\end{document}.
引用
收藏
页码:158 / 170
页数:12
相关论文
共 50 条
  • [21] Local antimagic chromatic number of trees - I
    Premalatha, K.
    Arumugam, S.
    Lee, Yi-Chun
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06) : 1591 - 1602
  • [22] Affirmative Solutions on Local Antimagic Chromatic Number
    Gee-Choon Lau
    Ho-Kuen Ng
    Wai-Chee Shiu
    Graphs and Combinatorics, 2020, 36 : 1337 - 1354
  • [23] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [24] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [25] The fractional chromatic number, the Hall ratio, and the lexicographic product
    Johnson, P. D., Jr.
    DISCRETE MATHEMATICS, 2009, 309 (14) : 4746 - 4749
  • [26] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129
  • [27] The number of spanning trees in a new lexicographic product of graphs
    Liang Dong
    Li Feng
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (11) : 1 - 9
  • [28] The number of spanning trees in a new lexicographic product of graphs
    Dong Liang
    Feng Li
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 9
  • [29] The number of spanning trees in a new lexicographic product of graphs
    LIANG Dong
    LI Feng
    XU ZongBen
    Science China(Information Sciences), 2014, 57 (11) : 57 - 65
  • [30] On the weak Roman domination number of lexicographic product graphs
    Valveny, Magdalena
    Perez-Roses, Hebert
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 257 - 270