On local antimagic chromatic number of lexicographic product graphs

被引:0
作者
G.-C. Lau
W. C. Shiu
机构
[1] Universiti Teknologi MARA (Johor Branch,College of Computing, Informatics and Media
[2] Segamat Campus),Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
local antimagic chromatic number; lexicographic product; regular; disconnected; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a simple connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} of order p and size q. For a bijection f:E→{1,2,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : E \to \{1,2,\ldots,q\}$$\end{document}, let f+(u)=∑e∈E(u)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) = \sum_{e\in E(u)} f(e)$$\end{document} where E(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)$$\end{document} is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u)≠f+(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) \ne f^+(v)$$\end{document}. The minimum number of distinct values of f+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+$$\end{document} taken over all local antimagic labeling of G is denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)$$\end{document}. Let G[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[H]$$\end{document} be the lexicographic product of graphs G and H. In this paper, we obtain sharp upper bound for χla(G[On])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G[O_n])$$\end{document} where On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} is a null graph of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. Sufficient conditions for even regular bipartite and tripartite graphs G to have χla(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=3$$\end{document} are also obtained. Consequently, we successfully determined the local antimagic chromatic number of infinitely many (connected and disconnected) regular graphs that partially support the existence of an r-regular graph G of order p such that (i) χla(G)=χ(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)=k$$\end{document}, and (ii) χla(G)=χ(G)+1=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)+1=k$$\end{document} for each possible r,p,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,p,k$$\end{document}.
引用
收藏
页码:158 / 170
页数:12
相关论文
共 50 条
[21]   Local antimagic chromatic number of trees - I [J].
Premalatha, K. ;
Arumugam, S. ;
Lee, Yi-Chun ;
Wang, Tao-Ming .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06) :1591-1602
[22]   Affirmative Solutions on Local Antimagic Chromatic Number [J].
Lau, Gee-Choon ;
Ng, Ho-Kuen ;
Shiu, Wai-Chee .
GRAPHS AND COMBINATORICS, 2020, 36 (05) :1337-1354
[23]   Affirmative Solutions on Local Antimagic Chromatic Number [J].
Gee-Choon Lau ;
Ho-Kuen Ng ;
Wai-Chee Shiu .
Graphs and Combinatorics, 2020, 36 :1337-1354
[24]   The Local Antimagic Chromatic Numbers of Some Join Graphs [J].
Yang, Xue ;
Bian, Hong ;
Yu, Haizheng ;
Liu, Dandan .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
[25]   The geodetic number of the lexicographic product of graphs [J].
Bresar, Bostjan ;
Sumenjak, Tadeja Kraner ;
Tepeh, Aleksandra .
DISCRETE MATHEMATICS, 2011, 311 (16) :1693-1698
[26]   The fractional chromatic number, the Hall ratio, and the lexicographic product [J].
Johnson, P. D., Jr. .
DISCRETE MATHEMATICS, 2009, 309 (14) :4746-4749
[27]   On the super domination number of lexicographic product graphs [J].
Dettlaff, M. ;
Lemanska, M. ;
Rodriguez-Velazquez, J. A. ;
Zuazua, R. .
DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) :118-129
[28]   The doubly resolving number of the lexicographic product of graphs [J].
Jannesari, Mohsen .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
[29]   The number of spanning trees in a new lexicographic product of graphs [J].
Liang Dong ;
Li Feng ;
Xu ZongBen .
SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (11) :1-9
[30]   The number of spanning trees in a new lexicographic product of graphs [J].
Dong Liang ;
Feng Li ;
ZongBen Xu .
Science China Information Sciences, 2014, 57 :1-9