Weak approximation over function fields of curves over large or finite fields

被引:0
作者
Yong Hu
机构
[1] Université Paris-Sud,Département de Mathématiques, Bâtiment 425
来源
Mathematische Annalen | 2010年 / 348卷
关键词
14M22; 14G05; 11G25; 14D10;
D O I
暂无
中图分类号
学科分类号
摘要
Let K = k(C) be the function field of a curve over a field k and let X be a smooth, projective, separably rationally connected K-variety with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X(K)\neq\emptyset}$$\end{document}. Under the assumption that X admits a smooth projective model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi: \mathcal{X}\to C}$$\end{document}, we prove the following weak approximation results: (1) if k is a large field, then X(K) is Zariski dense; (2) if k is an infinite algebraic extension of a finite field, then X satisfies weak approximation at places of good reduction; (3) if k is a nonarchimedean local field and R-equivalence is trivial on one of the fibers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{X}_p}$$\end{document} over points of good reduction, then there is a Zariski dense subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W\subseteq C(k)}$$\end{document} such that X satisfies weak approximation at places in W. As applications of the methods, we also obtain the following results over a finite field k: (4) if |k| > 10, then for a smooth cubic hypersurface X/K, the specialization map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X(K)\longrightarrow \prod_{p\in P}\mathcal{X}_p(\kappa(p))}$$\end{document} at finitely many points of good reduction is surjective; (5) if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{char}\,k\neq 2,\,3}$$\end{document} and |k| > 47, then a smooth cubic surface X over K satisfies weak approximation at any given place of good reduction.
引用
收藏
页码:357 / 377
页数:20
相关论文
共 30 条
[1]  
Campana F.(1992)Connexité rationnelle des variétés de Fano Ann. Sci. École Norm. Sup. (4) 25 539-545
[2]  
Colliot-Thélène J.-L.(1996)Groupes linéaires sur les corps de fonctions de courbes réelles J. für die reine und angew. Math. 474 139-167
[3]  
Colliot-Thélène J.-L.(1977)La Ann. Sci. École Norm. Sup. (4) 10 175-229
[4]  
Sansuc J.-J.(2003)-équivalence sur les tores Am. J. Math. 125 567-580
[5]  
de Jong A.J.(1974)Every rationally connected variety over the function field of a curve has a rational point Publ. Math. I.H.É.S. 43 273-307
[6]  
Starr J.(1998)La conjecture de Weil I J. für die reine angew. Math. 504 73-114
[7]  
Deligne P.(2003)L’obstruction de réciprocité à l’existence de points rationnels pour certaines variétés sur le corps des fonctions d’une courbe réelle J. Am. Math. Soc. 16 57-67
[8]  
Ducros A.(1965)Families of rationally connected varieties Publ. Math. I.H.É.S. 24 5-231
[9]  
Graber T.(2006)Éléments de géométrie algébrique, IV, Étude locale des schémas et des morphismes de schémas, seconde partie Invent. Math. 163 171-190
[10]  
Harris J.(2008)Weak approximation over function fields Pure Appl. Math. Q. 4 743-766