Convolutional neural network feature maps selection based on LDA

被引:0
|
作者
Ting Rui
Junhua Zou
You Zhou
Jianchao Fei
Chengsong Yang
机构
[1] PLA University of Science and Technology,
[2] State Key Laboratory for Novel Software Technology,undefined
[3] Nanjing University,undefined
[4] Jiangsu Institute of Commerce,undefined
来源
关键词
Feature maps selection; Convolutional neural network; Separability; Structure simplification;
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional neural network (CNN), as widely applied to vision and speech, has developed lager and lager network size in last few years. In this paper, we propose a CNN feature maps selection method which can simplify CNN structure on the premise of stabilize the classifier performance. Our approach aims to cut the feature map number of the last subsampling layer and achieves shortest runtime on the basis of Linear Discriminant Analysis (LDA). We rebuild feature maps selection formula based on the between-class scatter matrix and within-class scatter matrix, because LDA can lead to information loss in the dimension-reduction process. Our experiments measure on two standard datasets and a dataset made by ourselves. According to the separability value of each feature map, we suggest the least number of feature maps which can keep the classifier performance. Furthermore, we prove that separability value is an effective indicator for reference to select feature maps.
引用
收藏
页码:10635 / 10649
页数:14
相关论文
共 50 条
  • [21] A hybrid convolutional neural network approach for feature selection and disease classification
    Debata, Prajna Paramita
    Mohapatra, Puspanjali
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2580 - 2599
  • [22] Visual Attribute Classification Using Feature Selection and Convolutional Neural Network
    Qian, Rongqiang
    Yue, Yong
    Coenen, Frans
    Zhang, Bailing
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 649 - 653
  • [23] Image reconstruction for electrical impedance tomography based on spatial invariant feature maps and convolutional neural network
    Hu, Delin
    Lu, Keming
    Yang, Yunjie
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [24] EEG-based Emotion Recognition Under Convolutional Neural Network with Differential Entropy Feature Maps
    Li, Yifan
    Wong, Chi Man
    Zheng, Yudian
    Wan, Feng
    Mak, Peng Un
    Pun, Sio Hang
    Vai, Mang, I
    2019 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA 2019), 2019, : 6 - 10
  • [25] Convolutional neural network models using metaheuristic based feature selection method for intrusion detection
    Salati, Maryam
    Askerzade, Iman
    Bostanci, Gazi Erkan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 40 (01): : 179 - 188
  • [26] Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection
    Zhou, Qihang
    Zhou, Changjun
    Wang, Xiao
    PLOS ONE, 2022, 17 (02):
  • [27] Correction to: A new approach based on convolutional neural network and feature selection for recognizing vehicle types
    Gürkan Doğan
    Burhan Ergen
    Iran Journal of Computer Science, 2023, 6 (2) : 107 - 107
  • [28] Neural network ensemble based on feature selection
    Lin Jian
    Zhu Bangzhu
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2432 - +
  • [29] Network Traffic Threat Feature Recognition Based on a Convolutional Neural Network
    Yang, Gao
    Gopalakrishnan, Anilkumar Kothalil
    2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST), 2019, : 170 - 174
  • [30] OrthoMaps: an efficient convolutional neural network with orthogonal feature maps for tiny image classification
    Moradi, Reza
    Berangi, Reza
    Minaei, Behrooz
    IET IMAGE PROCESSING, 2019, 13 (12) : 2067 - 2076