Macroscopic modelling of prestressed microperiodic elastic media

被引:0
|
作者
M. Woźniak
E. Wierzbicki
Cz. Woźniak
机构
[1] Kielce Technological University,Department of Road and Traffic Engineering
[2] Czestochowa University of Technology,Institute of Mathematics and Informatics
来源
Acta Mechanica | 2004年 / 173卷
关键词
Dynamical System; Fluid Dynamics; General Result; Special Problem; Average Method;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this contribution is to formulate and apply a macroscopic model for the analysis of the dynamics and stability of prestressed microperiodic elastic media. This modelling problem has been solved by Kolpakov [1] using the asymptotic homogenization method. However, the method used in [1] neglects the effect of the period length on the macroscopic (overall) solid behavior. To eliminate this drawback we propose a nonasymptotic modelling approach which is a certain generalization of the tolerance averaging method recently presented in [2] and a series of papers. The presented general results are illustrated by the analysis of a certain special problem.
引用
收藏
页码:107 / 117
页数:10
相关论文
共 50 条
  • [31] Dependence of the macroscopic elastic properties of porous media on the parameters of a stochastic spatial pore distribution
    Konovalenko, Ig. S.
    Smolin, A. Yu.
    Korostelev, S. Yu.
    Psakh'e, S. G.
    TECHNICAL PHYSICS, 2009, 54 (05) : 758 - 761
  • [32] Dependence of the macroscopic elastic properties of porous media on the parameters of a stochastic spatial pore distribution
    Ig. S. Konovalenko
    A. Yu. Smolin
    S. Yu. Korostelev
    S. G. Psakh’e
    Technical Physics, 2009, 54 : 758 - 761
  • [33] Modelling of elastic waves generated at the interface between anisotropic media
    Ben Amor, M
    Ben Ghozlen, MH
    Lanceleur, P
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2003, 89 (04): : 625 - 631
  • [34] Elastic wave modelling in heterogeneous media with high velocity contrasts
    Zhang, JF
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 159 (01) : 223 - 239
  • [35] Numerical modelling of wave propagation in elastic rectangular block media
    Zhou, JW
    Saffari, N
    JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) : 299 - 309
  • [36] MODELLING OF POROUS ELASTIC AND VISCOELASTIC MEDIA AND ITS APPLICATION TO THE BRAIN
    Begg, R.
    Murley, J.
    Kohandel, M.
    Sivaloganathan, S.
    BIOMAT 2013: INTERNATIONAL SYMPOSIUM ON MATHEMATICAL AND COMPUTATIONAL BIOLOGY, 2014, : 219 - 233
  • [37] 3D acoustoelastic FD modeling of elastic wave propagation in prestressed solid media
    Yang, Haidi
    Fu, Li-Yun
    Li, Hongyang
    Du, Qizhen
    Zheng, Haochen
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2023, 20 (02) : 297 - 311
  • [38] THE ELASTIC-ANISOTROPY OF A PRESTRESSED MEDIUM
    NIKITIN, LV
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1983, (12): : 29 - 33
  • [39] OPTIMAL DESIGN OF PRESTRESSED ELASTIC STRUCTURES
    NAGTEGAAL, JC
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1972, 14 (11) : 779 - +
  • [40] HOMOGENEOUS SOLUTIONS FOR A PRESTRESSED ELASTIC PLATE
    ZUBOV, LM
    RUDEV, AN
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1978, 42 (05): : 1003 - 1013