On the Morse index of branched Willmore spheres in 3-space

被引:0
作者
Alexis Michelat
机构
[1] ETH Zentrum,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
35J35; 35R01; 49Q05; 49Q10; 53A05; 53A10; 53A30; 53C42; 58E15;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a general method to compute the Morse index of branched Willmore spheres and show that the Morse index is equal to the index of certain matrix whose dimension is equal to the number of ends of the dual minimal surface (when the latter exists). As a corollary, we find that for all immersed Willmore spheres Φ→:S2→R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {\Phi }:S^2\rightarrow \mathbb {R}^3$$\end{document} such that W(Φ→)=4πn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\vec {\Phi })=4\pi n$$\end{document}, we have IndW(Φ→)≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {Ind}_{W}(\vec {\Phi })\le n-1$$\end{document}.
引用
收藏
相关论文
共 33 条
[1]  
Bernard Y(2013)Singularity removability at branch points for Willmore surfaces Pac. J. Math. 265 257-311
[2]  
Rivière T(2014)Energy quantization for Willmore surfaces and applications Ann. Math. 180 87-136
[3]  
Bernard Y(1993)Asymptotics for the minimization of a Ginzburg–Landau functional Calc. Var. Partial Differ. Equ. 1 123-148
[4]  
Rivière T(1848)Mémoire sur la théorie générale des surfaces J. l’École Polytech. 32 1-46
[5]  
Bethuel F(1984)A duality theorem for Willmore surfaces J. Differ. Geom. 20 23-53
[6]  
Brezis H(1990)Index, vision number and stability of complete minimal surfaces Arch. Rational Mech. Anal. 109 195-212
[7]  
Hélein F(1993)Complete minimal surfaces in Proc. Am. Math. Soc. 119 1279-1287
[8]  
Bonnet P-O(1827) of genus one and four planar embedded ends Comment. Soc. Regiae Sci. Gottingensis Recentiores 6 99-146
[9]  
Bryant RL(1831)Disquisitiones generales circa superficies curvas J. Reine Angew. Math. 7 1-29
[10]  
Choe J(1983)Mémoire sur la coubure des surfaces Topology 22 203-221