Sharp well-posedness for the Benjamin–Ono equation

被引:0
|
作者
Rowan Killip
Thierry Laurens
Monica Vişan
机构
[1] University of California,Department of Mathematics
[2] University of Wisconsin-Madison,Department of Mathematics
来源
Inventiones mathematicae | 2024年 / 236卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Benjamin–Ono equation is shown to be well-posed, both on the line and on the circle, in the Sobolev spaces Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{s}$\end{document} for s>−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s>-\tfrac{1}{2}$\end{document}. The proof rests on a new gauge transformation and benefits from our introduction of a modified Lax pair representation of the full hierarchy. As we will show, these developments yield important additional dividends beyond well-posedness, including (i) the unification of the diverse approaches to polynomial conservation laws; (ii) a generalization of Gérard’s explicit formula to the full hierarchy; and (iii) new virial-type identities covering all equations in the hierarchy.
引用
收藏
页码:999 / 1054
页数:55
相关论文
共 50 条
  • [1] Sharp well-posedness for the Benjamin-Ono equation
    Killip, Rowan
    Laurens, Thierry
    Visan, Monica
    INVENTIONES MATHEMATICAE, 2024, 236 (03) : 999 - 1054
  • [2] SHARP WELL-POSEDNESS FOR THE BENJAMIN-ONO EQUATION
    Killip, Rowan
    Laurens, Thierry
    Vişan, Monica
    arXiv, 2023,
  • [3] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [4] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [5] On well-posedness for the Benjamin-Ono equation
    Burq, Nicolas
    Planchon, Fabrice
    MATHEMATISCHE ANNALEN, 2008, 340 (03) : 497 - 542
  • [6] SHARP WELL-POSEDNESS RESULTS FOR THE GENERALIZED BENJAMIN-ONO EQUATION WITH HIGH NONLINEARITY
    Vento, Stephane
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (5-6) : 425 - 446
  • [7] SHARP WELL-POSEDNESS RESULTS FOR THE SCHRODINGER-BENJAMIN-ONO SYSTEM
    Domingues, Leandro
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (1-2) : 31 - 54
  • [8] Global well-posedness in the energy space for the Benjamin–Ono equation on the circle
    Luc Molinet
    Mathematische Annalen, 2007, 337 : 353 - 383
  • [9] On the local well-posedness of the Benjamin-Ono equation in Hs(R)
    Koch, H
    Tzvetkov, N
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (26) : 1449 - 1464
  • [10] Well-posedness for a higher-order Benjamin-Ono equation
    Linares, Felipe
    Pilod, Didier
    Ponce, Gustavo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (01) : 450 - 475