An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function

被引:0
|
作者
Radu Ioan Boţ
Ernö Robert Csetnek
Michael Sedlmayer
机构
[1] University of Vienna,Faculty of Mathematics
[2] University of Vienna,Research Network Data Science @ Uni Vienna
来源
Computational Optimization and Applications | 2023年 / 86卷
关键词
Saddle point problem; Convex-concave; Minimax algorithm; Convergence rate; Acceleration; Linear convergence;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we aim to solve a convex-concave saddle point problem, where the convex-concave coupling function is smooth in one variable and nonsmooth in the other and not assumed to be linear in either. The problem is augmented by a nonsmooth regulariser in the smooth component. We propose and investigate a novel algorithm under the name of OGAProx, consisting of an optimistic gradient ascent step in the smooth variable coupled with a proximal step of the regulariser, and which is alternated with a proximal step in the nonsmooth component of the coupling function. We consider the situations convex-concave, convex-strongly concave and strongly convex-strongly concave related to the saddle point problem under investigation. Regarding iterates we obtain (weak) convergence, a convergence rate of order O(1K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\frac{1}{K})$$\end{document} and linear convergence like O(θK)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\theta ^{K})$$\end{document} with θ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta < 1$$\end{document}, respectively. In terms of function values we obtain ergodic convergence rates of order O(1K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\frac{1}{K})$$\end{document}, O(1K2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\frac{1}{K^{2}})$$\end{document} and O(θK)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\theta ^{K})$$\end{document} with θ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta < 1$$\end{document}, respectively. We validate our theoretical considerations on a nonsmooth-linear saddle point problem, the training of multi kernel support vector machines and a classification problem incorporating minimax group fairness.
引用
收藏
页码:925 / 966
页数:41
相关论文
共 50 条
  • [1] An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Sedlmayer, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 925 - 966
  • [2] A simple algorithm for a class of nonsmooth convex-concave saddle-point problems
    Drori, Yoel
    Sabach, Shoham
    Teboulle, Marc
    OPERATIONS RESEARCH LETTERS, 2015, 43 (02) : 209 - 214
  • [3] Nonsmooth convex-concave saddle point problems with cardinality penalties
    Bian, Wei
    Chen, Xiaojun
    MATHEMATICAL PROGRAMMING, 2024,
  • [4] Accelerated Stochastic Algorithms for Convex-Concave Saddle-Point Problems
    Zhao, Renbo
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) : 1443 - 1473
  • [5] AN ACCELERATED HPE-TYPE ALGORITHM FOR A CLASS OF COMPOSITE CONVEX-CONCAVE SADDLE-POINT PROBLEMS
    He, Yunlong
    Monteiro, Renato D. C.
    SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) : 29 - 56
  • [6] SEMI-PROXIMAL POINT METHOD FOR NONSMOOTH CONVEX-CONCAVE MINIMAX OPTIMIZATION
    Dai, Yuhong
    Wang, Jiani
    Zhang, Liwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03): : 617 - 637
  • [7] Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling
    Kovalev, Dmitry
    Gasnikov, Alexander
    Richtarik, Peter
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [8] A PRIMAL-DUAL ALGORITHM WITH LINE SEARCH FOR GENERAL CONVEX-CONCAVE SADDLE POINT PROBLEMS
    Hamedani, Erfan Yazdandoost
    Aybat, Necdet Serhat
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) : 1299 - 1329
  • [9] An accelerated non-Euclidean hybrid proximal extragradient-type algorithm for convex-concave saddle-point problems
    Kolossoski, O.
    Monteiro, R. D. C.
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (06): : 1244 - 1272
  • [10] NEW PRIMAL-DUAL ALGORITHMS FOR A CLASS OF NONSMOOTH AND NONLINEAR CONVEX-CONCAVE MINIMAX PROBLEMS
    Zhu, Yuzixuan
    Liu, Deyi
    Tran-Dinh, Quoc
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2580 - 2611