Decomposition algorithms for generalized potential games

被引:0
作者
Francisco Facchinei
Veronica Piccialli
Marco Sciandrone
机构
[1] Sapienza Università di Roma,Dipartimento di Informatica e Sistemistica Antonio Ruberti
[2] Università di Tor Vergata,Dipartimento di Ingegneria dell’Impresa
[3] Università di Firenze,Dipartimento di Sistemi e Informatica
来源
Computational Optimization and Applications | 2011年 / 50卷
关键词
Generalized Nash equilibrium problem; Generalized potential game; Decomposition; Regularization;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze some new decomposition schemes for the solution of generalized Nash equilibrium problems. We prove convergence for a particular class of generalized potential games that includes some interesting engineering problems. We show that some versions of our algorithms can deal also with problems lacking any convexity and consider separately the case of two players for which stronger results can be obtained.
引用
收藏
页码:237 / 262
页数:25
相关论文
共 27 条
[1]  
Altman E.(2006)A survey on networking games in telecommunications Comput. Oper. Res. 33 286-311
[2]  
Boulogne T.(2004)Equilibrium, games and pricing in transportation and telecommunication Networks Netw. Spat. Econ. 4 7-21
[3]  
El-Azouzi R.(2007)Extra-proximal methods for solving two-person nonzero-sum games Math. Program. B 36 461-464
[4]  
Jiménez T.(2008)Generalized Nash equilibrium problem, variational inequality and quasiconvexity Oper. Res. Lett. 38 355-367
[5]  
Wynter L.(2002)Repeated play of potential games Cybern. Syst. Anal. 5 173-210
[6]  
Altman E.(2007)Generalized Nash equilibrium problems 4OR 42 641-646
[7]  
Wynter L.(1993)A simple distributed autonomous power control algorithm and its convergence IEEE Trans. Veh. Technol. 26 127-136
[8]  
Antipin A.(2000)On the convergence of the block nonlinear Gauss-Seidel method under convex constraints Oper. Res. Lett. 14 124-143
[9]  
Aussel D.(1996)Potential Games Games Econ. Behav. 4 193-201
[10]  
Dutta J.(1973)On search directions for minimization algorithms Math. Program. 33 520-534