A gluing formula for Reidemeister–Turaev torsion

被引:0
作者
Stefano Borghini
机构
[1] Scuola Normale Superiore di Pisa,
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2015年 / 194卷
关键词
Reidemeister torsion; Euler structures; Spines; Primary 57M27; Secondary 57N10; 57Q10; 57R25;
D O I
暂无
中图分类号
学科分类号
摘要
We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} to the case of vector fields having generic behavior on ∂M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial M$$\end{document}. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.
引用
收藏
页码:1535 / 1561
页数:26
相关论文
共 12 条
[1]  
Atiyah M(1989)Topological quantum field theories Publ. Math. IHES 68 175-186
[2]  
Benedetti R(2001)Reidemeister torsion of 3-dimensional Euler structures with simple boundary tangency and pseudo-Legendrian knots Manuscripta Math. 106 13-61
[3]  
Petronio C(1972)Stiefel-Whitney homology classes Ann. Math. (2) 96 511-525
[4]  
Halperin S(1962)A duality theorem for Reidemeister torsion Ann. Math. 76 1-6506
[5]  
Toledo D(1966)Whitehead torsion Bull. Am. Math. Soc. 72 3-28
[6]  
Milnor JW(1965)Formes canoniques des singularité d’une applicatione différentiable C. R. Acad. Sci. Paris 260 6503-undefined
[7]  
Milnor JW(2006)An introduction to Heegaard Floer homology Clay Math. Proc. 5 3-undefined
[8]  
Morin B(1990)Euler structures, nonsingular vector fields, and torsions of Reidemeister type Math. USSR Izvestiya 34 3-undefined
[9]  
Ozsváth P(1955)On singularities of mappings of Euclidean spaces. I. Mapping of the plane into the plane Ann. Math. 62 3-undefined
[10]  
Szabó Z(undefined)undefined undefined undefined undefined-undefined