Equilateral Chains and Cyclic Central Configurations of the Planar Five-Body Problem

被引:0
作者
Yiyang Deng
Marshall Hampton
机构
[1] Chongqing Technology and Business University,College of Mathematics and Statistics
[2] University of Minnesota Duluth,Department of Mathematics and Statistics
来源
Journal of Nonlinear Science | 2023年 / 33卷
关键词
Celestial mechanics; Relative equilibria; N-body problem; Central configurations; 70F15; 37Jxx;
D O I
暂无
中图分类号
学科分类号
摘要
Central configurations and relative equilibria are an important facet of the study of the N-body problem, but become very difficult to rigorously analyze for N>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>3$$\end{document}. In this paper, we focus on a particular but interesting class of configurations of the five-body problem: the equilateral pentagonal configurations, which have a cycle of five equal edges. We prove a variety of results concerning central configurations with this property, including a computer-assisted proof of the finiteness of such configurations for any positive five masses with a range of rational-exponent homogeneous potentials (including the Newtonian case and the point-vortex model), some constraints on their shapes, and we determine some exact solutions for particular N-body potentials.
引用
收藏
相关论文
共 69 条
[1]  
Albouy A(1993)Integral manifolds of the Invent. Math. 114 463-488
[2]  
Albouy A(1997)-body problem Invent. Math. 131 151-184
[3]  
Chenciner A(2012)Le problème des n corps et les distances mutuelles Ann. Math. 176 535-588
[4]  
Albouy A(2022)Finiteness of central configurations of five bodies in the plane Commun. Nonlinear Sci. Numer. Simul. 112 50-59
[5]  
Kaloshin V(1906)On the equilateral pentagonal central configurations Bull. Astron. 23 1-21
[6]  
Alvarez-Ramírez M(1992)Sur l’équilibre relatif de n corps Annu. Rev. Fluid Mech. 24 1-4
[7]  
Gasull A(1975)Gröbli’s solution of the three-vortex problem Func. Anal. Appl. 9 57-79
[8]  
Llibre J(1957)The number of roots of a system of equations Sov. Astron. 1 59-72
[9]  
Andoyer H(1973)Permanent configurations in the problem of four bodies and their stability Invent. Math. 20 321-389
[10]  
Aref H(1918)On the integral manifolds of the Bull. Astronom. 35 1907-1924