Atomicity related to non-additive integrability

被引:10
|
作者
Candeloro D. [1 ]
Croitoru A. [2 ]
Gavriluţ A. [2 ]
Sambucini A.R. [1 ]
机构
[1] Department of Mathematics and Computer Sciences, University of Perugia, 1, Via Vanvitelli, Perugia
[2] Faculty of Mathematics, “Al. I. Cuza” University, Iaşi
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2016年 / 65卷 / 3期
关键词
Atom; Birkhoff integral; Finitely purely atomic measures; Gould integral; Non-additive measure; Vector function;
D O I
10.1007/s12215-016-0244-z
中图分类号
学科分类号
摘要
In this paper we present some results concerning Gould integrability of vector functions with respect to a monotone measure on finitely purely atomic measure spaces. As an application a Radon-Nikodym theorem in this setting is obtained. © 2016, Springer-Verlag Italia.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [1] Atomicity via regularity for non-additive set multifunctions
    Pap, Endre
    Gavrilut, Alina
    Agop, Maricel
    SOFT COMPUTING, 2016, 20 (12) : 4761 - 4766
  • [2] Atomicity via regularity for non-additive set multifunctions
    Endre Pap
    Alina Gavriluţ
    Maricel Agop
    Soft Computing, 2016, 20 : 4761 - 4766
  • [3] Properties of the Riemann–Lebesgue integrability in the non-additive case
    Domenico Candeloro
    Anca Croitoru
    Alina Gavriluţ
    Alina Iosif
    Anna Rita Sambucini
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 577 - 589
  • [4] Properties of the Riemann-Lebesgue integrability in the non-additive case
    Candeloro, Domenico
    Croitoru, Anca
    Gavrilut, Alina
    Iosif, Alina
    Sambucini, Anna Rita
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 577 - 589
  • [5] ADDITIVE AND NON-ADDITIVE ENTROPIES
    MITTAL, DP
    KYBERNETIKA, 1975, 11 (04) : 271 - 276
  • [6] NON-ADDITIVE INTERACTIONS
    PRESENT, RD
    CONTEMPORARY PHYSICS, 1971, 12 (06) : 595 - &
  • [7] Non-additive geometry
    Haran, M. J. Shai
    COMPOSITIO MATHEMATICA, 2007, 143 (03) : 618 - 688
  • [8] A Non-Additive Measure of Uncertainty
    Shackle, G. L. S.
    REVIEW OF ECONOMIC STUDIES, 1949, 17 : 70 - 74
  • [9] On Regularity for Non-additive Measure
    Watanabe, Toshikazu
    Tanaka, Tamaki
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 69 - 75
  • [10] On the polytope of non-additive measures
    Combarro, Elias F.
    Miranda, Pedro
    FUZZY SETS AND SYSTEMS, 2008, 159 (16) : 2145 - 2162