Kernel extreme learning machine for flatness pattern recognition in cold rolling mill based on particle swarm optimization

被引:0
作者
Xiaogang Li
Yiming Fang
Le Liu
机构
[1] Yanshan University,Key Lab of Industrial Computer Control Engineering of Hebei Province
[2] National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,undefined
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2020年 / 42卷
关键词
Kernel function; Extreme learning machine; Particle swarm optimization; Flatness recognition of cold rolling mill;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a kernel extreme learning machine (KELM) flatness recognition model based on particle swarm optimization (PSO). Compared with the extreme learning machine (ELM), the KELM has fewer initial parameters and better recognition performance. Next, the PSO algorithm can serve to optimize the setting parameters of KELM, and finally, the proposed algorithm (briefly the PSO-KELM) is applied to recognize the flatness pattern of cold rolling mill. In particular, PSO-KELM is trained and tested by simulation flatness data, and the test results show that the PSO-KELM dominates backpropagation neural network (BP), ELM, and KELM. Then, the measured data from the shape meter of cold rolling mill is taken as test data, and the test results are reconstructed to the flatness curve by the flatness curve equation. By the fitness of the measured flatness values with the recognition flatness curve, we claim that the PSO-KELM can make accurate recognition in complex situation.
引用
收藏
相关论文
共 50 条
  • [21] Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine
    Goel, Tripti
    Murugan, R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 85
  • [22] An Improved Ensemble of Extreme Learning Machine Based on Attractive and Repulsive Particle Swarm Optimization
    Yang, Dan
    Han, Fei
    INTELLIGENT COMPUTING THEORY, 2014, 8588 : 213 - 220
  • [23] Short-circuit current prediction technology based on particle swarm optimization extreme learning machine
    Wang M.-J.
    Wei X.-L.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2022, 26 (01): : 68 - 76
  • [24] Extreme Learning Machine based on Improved Multi-Objective Particle Swarm Optimization
    Tan, Kaimin
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 333 - 337
  • [25] Classification of Rubber Vulcanizing Accelerators Based on Particle Swarm Optimization Extreme Learning Machine and Terahertz Spectra
    Yin, X.
    He, W.
    Wang, L.
    Mo, W.
    Li, A.
    JOURNAL OF APPLIED SPECTROSCOPY, 2022, 88 (06) : 1315 - 1323
  • [26] An Improved Incremental Error Minimized Extreme Learning Machine for Regression Problem Based on Particle Swarm Optimization
    Han, Fei
    Zhao, Min-Ru
    Zhang, Jian-Ming
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 94 - 100
  • [27] Classification of Rubber Vulcanizing Accelerators Based on Particle Swarm Optimization Extreme Learning Machine and Terahertz Spectra
    X. Yin
    W. He
    L. Wang
    W. Mo
    A. Li
    Journal of Applied Spectroscopy, 2022, 88 : 1315 - 1323
  • [28] Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis
    Zheng, Longkui
    Xiang, Yang
    Sheng, Chenxing
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (11)
  • [29] Optimization-based improved kernel extreme learning machine for rolling bearing fault diagnosis
    Longkui Zheng
    Yang Xiang
    Chenxing Sheng
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [30] Study on Dynamic Balance in Main Driving Mechanism of Cold Rolling Mill Based on the Particle Swarm Optimization Algorithm
    Tang Wen-xian
    Sun Jun-jie
    Wang Bin
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 633 - +