A Model for Approximately Stretched-Exponential Relaxation with Continuously Varying Stretching Exponents

被引:0
|
作者
Joseph D. Paulsen
Sidney R. Nagel
机构
[1] Syracuse University,Department of Physics
[2] The University of Chicago,The James Franck and Enrico Fermi Institutes and The Department of Physics
来源
Journal of Statistical Physics | 2017年 / 167卷
关键词
Glasses; Particulate media; Relaxation; Transport processes;
D O I
暂无
中图分类号
学科分类号
摘要
Relaxation in glasses is often approximated by a stretched-exponential form: f(t)=Aexp[-(t/τ)β]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(t) = A \exp [-(t/\tau )^{\beta }]$$\end{document}. Here, we show that the relaxation in a model of sheared non-Brownian suspensions developed by Corté et al. (Nat Phys 4:420–424, 2008) can be well approximated by a stretched exponential with an exponent β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} that depends on the strain amplitude: 0.25<β<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.25< \beta < 1$$\end{document}. In a one-dimensional version of the model, we show how the relaxation originates from density fluctuations in the initial particle configurations. Our analysis is in good agreement with numerical simulations and reveals a functional form for the relaxation that is distinct from, but well approximated by, a stretched-exponential function.
引用
收藏
页码:749 / 762
页数:13
相关论文
共 50 条
  • [1] A Model for Approximately Stretched-Exponential Relaxation with Continuously Varying Stretching Exponents
    Paulsen, Joseph D.
    Nagel, Sidney R.
    JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (3-4) : 749 - 762
  • [2] STRETCHED-EXPONENTIAL CARRIER RELAXATION IN SEMICONDUCTORS
    PHILLIPS, JC
    PHYSICAL REVIEW B, 1995, 52 (12) : R8637 - R8639
  • [3] DERIVATION OF A STRETCHED-EXPONENTIAL TIME RELAXATION
    FLESSELLES, JM
    BOTET, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07): : 903 - 909
  • [4] Stretched-exponential relaxation in arrays of coupled rotators
    Eleftheriou, M
    Lepri, S
    Livi, R
    Piazza, F
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 204 (3-4) : 230 - 239
  • [5] Stretched-exponential relaxation: the role of system size
    Bunde, A
    Havlin, S
    Klafter, J
    Graff, G
    Shehter, A
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1998, 77 (05): : 1323 - 1329
  • [6] Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model
    Bennett, KM
    Schmainda, KM
    Bennett, R
    Rowe, DB
    Lu, HB
    Hyde, JS
    MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (04) : 727 - 734
  • [7] Local events and stretched-exponential relaxation in glasses
    Trachenko, K
    Dove, MT
    PHYSICAL REVIEW B, 2004, 70 (13) : 132202 - 1
  • [8] The modified stretched-exponential model for characterization of NMR relaxation in porous media
    Peyron, M
    Pierens, GK
    Lucas, AJ
    Hall, LD
    Stewart, RC
    JOURNAL OF MAGNETIC RESONANCE SERIES A, 1996, 118 (02) : 214 - 220
  • [9] INTRAMOLECULAR CONTRIBUTIONS TO STRETCHED-EXPONENTIAL RELAXATION BEHAVIOR IN POLYMERS
    BAHAR, I
    ERMAN, B
    FYTAS, G
    STEFFEN, W
    MACROMOLECULES, 1994, 27 (18) : 5200 - 5205
  • [10] STRETCHED-EXPONENTIAL RELAXATION AT A SELF-SIMILAR SURFACE
    HALSEY, TC
    LEIBIG, M
    PHYSICAL REVIEW A, 1991, 43 (12): : 7087 - 7090