Best bilinear approximations of functions from Nikol’skii–Besov classes

被引:0
作者
A. S. Romanyuk
V. S. Romanyuk
机构
来源
Ukrainian Mathematical Journal | 2012年 / 64卷
关键词
Trigonometric Polynomial; Sobolev Class; Bilinear Approximation; Singular Number; Kolmogorov Width;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain exact-order estimates for the best bilinear approximations of Nikol’skii–Besov classes in the functional spaces Lq(π2d).
引用
收藏
页码:781 / 796
页数:15
相关论文
共 20 条
[1]  
Besov OV(1961)Investigation of one family of functional spaces in connection with imbedding and continuity theorems Tr. Mat. Inst. Akad. Nauk SSSR 60 42-61
[2]  
Nikol’skii SM(1951)Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of many variables Tr. Mat. Inst. Akad. Nauk SSSR 38 244-278
[3]  
Lizorkin PI(1968)Generalized Hölder spaces Sib. Mat. Zh. 9 1127-1152
[4]  
Schmidt E(1907) and their relation to Sobolev spaces Math. Ann. 63 433-476
[5]  
Birman MS(1977)Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Usp. Mat. Nauk 32 17-84
[6]  
Solomyak MZ(1982)Estimates for singular numbers of integral operators Mat. Zametki 32 721-727
[7]  
Miroshin NV(1974)On one problem of the best approximation of functions of many variables Usp. Mat. Nauk 29 161-178
[8]  
Khromov VV(1978)Widths of sets in linear normed spaces and approximation of functions by trigonometric polynomials J. Approxim. Theory 24 51-77
[9]  
Ismagilov RS(1986)Some problems in the approximation of functions of two variables and Tr. Mat. Inst. Akad. Nauk SSSR 173 243-252
[10]  
Micchelli CA(1988)-widths of integral operators Tr. Mat. Inst. Akad. Nauk SSSR 181 250-267