The action dimension of Artin groups

被引:0
作者
Giang Le
机构
[1] San Jose State University,Department of mathematics and statistics
来源
Geometriae Dedicata | 2020年 / 207卷
关键词
Action dimension; Artin groups; Hyperplane complement; 20F36; 20F65;
D O I
暂无
中图分类号
学科分类号
摘要
The action dimension of a discrete group G is the minimum dimension of a contractible manifold, which admits a proper G-action. In this paper, we study the action dimension of general Artin groups. The main result is that if an Artin group with the nerve L of dimension n for n≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ne 2$$\end{document} satisfies the K(π,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(\pi , 1)$$\end{document}-Conjecture and the top cohomology group of L with Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}-coefficients is trivial, then the action dimension of the Artin group is less than or equal to (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n + 1)$$\end{document}. For n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 2$$\end{document}, we need one more condition on L to get the same inequality; that is the fundamental group of L is generated by r elements where r is the rank of H1(L,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1(L, {\mathbb {Z}})$$\end{document}.
引用
收藏
页码:335 / 354
页数:19
相关论文
共 20 条
[1]  
Avramidi G(2016)The action dimension of right-angled artin groups Bull. Lond. Math. Soc. 48 115-126
[2]  
Davis M(2002)Van kampen’s embedding obstruction for discrete groups Invent. Math. 150 219-235
[3]  
Okun B(1971)Sur les groupes de tresses Semiinaire Bourbaki 401 21-41
[4]  
Schreve K(1995)The J. Am. Math. Soc. 8 597-627
[5]  
Bestvina M(1935) problem for hyperplane complements associated to infinite reflection groups J. Lond. Math. Soc. 10 21-25
[6]  
Kapovich M(2005)The complete enumeration of finite groups of the form Adv. Geom. 5 607-636
[7]  
Kleiner B(1972)Artin groups of type b and d Invent. Math. 17 273-302
[8]  
Brieskorn E(1987)Les immeubles des groupes de tresses generalises J. Algebra 106 484-489
[9]  
Charney R(1970)Graph groups, coherence, and three-manifolds Bull. Lond. Math. Soc 2 316-318
[10]  
Davis MW(2004)Embedding polyhedra Bol. Soc. Mat. Mexicana 10 193-198