Expectation value of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in curved spacetimes

被引:0
作者
Yunfeng Jiang
机构
[1] CERN,Theoretical Physics Department
关键词
Effective Field Theories; Field Theories in Lower Dimensions; Renormalization Group;
D O I
10.1007/JHEP02(2020)094
中图分类号
学科分类号
摘要
We study the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator depends on both the one- and two-point functions of the stress-energy tensor.
引用
收藏
相关论文
共 50 条
[21]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} and EE, with implications for (A)dS subregion encodings [J].
Aitor Lewkowycz ;
Junyu Liu ;
Eva Silverstein ;
Gonzalo Torroba .
Journal of High Energy Physics, 2020, 2020 (4)
[22]   Composite operators in TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed free QFTs [J].
Anshuman Dey ;
Mikhail Goykhman ;
Michael Smolkin .
Journal of High Energy Physics, 2021 (6)
[23]   S-duality in TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed CFT [J].
Nathan Benjamin ;
Scott Collier ;
Jorrit Kruthoff ;
Herman Verlinde ;
Mengyang Zhang .
Journal of High Energy Physics, 2023 (5)
[24]   Linear response of entanglement entropy to TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} in massive QFTs [J].
Shachar Ashkenazi ;
Soumangsu Chakraborty ;
Zhanyu Ma ;
Tom Shachar .
Journal of High Energy Physics, 2023 (4)
[25]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformation and long range spin chains [J].
Balázs Pozsgay ;
Yunfeng Jiang ;
Gábor Takács .
Journal of High Energy Physics, 2020 (3)
[27]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformations of non-relativistic models [J].
Chantelle Esper ;
Sergey Frolov .
Journal of High Energy Physics, 2021 (6)
[28]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed scattering happens within matrices [J].
Vasudev Shyam ;
Yigit Yargic .
Journal of High Energy Physics, 2023 (4)
[29]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} partition function from topological gravity [J].
Sergei Dubovsky ;
Victor Gorbenko ;
Guzmán Hernández-Chifflet .
Journal of High Energy Physics, 2018 (9)