Expectation value of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in curved spacetimes

被引:0
作者
Yunfeng Jiang
机构
[1] CERN,Theoretical Physics Department
关键词
Effective Field Theories; Field Theories in Lower Dimensions; Renormalization Group;
D O I
10.1007/JHEP02(2020)094
中图分类号
学科分类号
摘要
We study the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator depends on both the one- and two-point functions of the stress-energy tensor.
引用
收藏
相关论文
共 50 条
[11]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed partition functions [J].
Shouvik Datta ;
Yunfeng Jiang .
Journal of High Energy Physics, 2018 (8)
[12]   Moving the CFT into the bulk with TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} [J].
Lauren McGough ;
Márk Mezei ;
Herman Verlinde .
Journal of High Energy Physics, 2018 (4)
[15]   Modular invariance and uniqueness of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed CFT [J].
Ofer Aharony ;
Shouvik Datta ;
Amit Giveon ;
Yunfeng Jiang ;
David Kutasov .
Journal of High Energy Physics, 2019 (1)
[17]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed entanglement entropy for IQFT [J].
Miao He ;
Jue Hou ;
Yunfeng Jiang .
Journal of High Energy Physics, 2024 (3)
[18]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformations and the width of fundamental particles [J].
John Cardy ;
Benjamin Doyon .
Journal of High Energy Physics, 2022 (4)
[19]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformations of supersymmetric quantum mechanics [J].
Stephen Ebert ;
Christian Ferko ;
Hao-Yu Sun ;
Zhengdi Sun .
Journal of High Energy Physics, 2022 (8)
[20]   TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}-deformed fermionic theories revisited [J].
Kyung-Sun Lee ;
Piljin Yi ;
Junggi Yoon .
Journal of High Energy Physics, 2021 (7)