Expectation value of TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in curved spacetimes

被引:0
|
作者
Yunfeng Jiang
机构
[1] CERN,Theoretical Physics Department
关键词
Effective Field Theories; Field Theories in Lower Dimensions; Renormalization Group;
D O I
10.1007/JHEP02(2020)094
中图分类号
学科分类号
摘要
We study the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator in maximally symmetric spacetimes. We define an diffeomorphism invariant biscalar whose coinciding limit gives the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator. We show that this biscalar is a constant in flat spacetime, which reproduces Zamolodchikov’s result in 2004. For spacetimes with non-zero curvature, we show that this is no longer true and the expectation value of the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{T}\overline{\mathrm{T}} $$\end{document} operator depends on both the one- and two-point functions of the stress-energy tensor.
引用
收藏
相关论文
共 50 条