Removal of surfactant from industrial wastewaters by coagulation flocculation process

被引:158
作者
Aboulhassan M.A. [1 ]
Souabi S. [1 ]
Yaacoubi A. [2 ]
Baudu M. [3 ]
机构
[1] Laboratoire de Génie de l'Eau et de l'Environnement, Faculté des Sciences et Techniques, Mohammedia
[2] Laboratoire de Chimie Organique Appliquée, Faculté des Sciences Semlalia, Marrakech
[3] Laboratoire de l'Eau et l'Environnement, Faculté des Sciences de Limoges
关键词
Coagulation flocculation; Industrial wastewaters; Iron chloride; Surfactants;
D O I
10.1007/BF03325941
中图分类号
学科分类号
摘要
Surfactants are among the most widely disseminated xenobiotics that contribute significantly to the pollution profile of sewage and wastewaters of all kinds. Among the currently employed chemical unit processes in the treatment of wastewaters, coagulation-flocculation has received considerable attention for yielding high pollutant removal efficiency. Jar-test experiments are employed in order to determine the optimum conditions for the removal of surfactants, COD and turbidity in terms of effective dosage, and pH control. Treatment with FeCl3 proved to be effective in a pH range between 7 and 9. The process is very effective in the reduction of surfactants and COD, the removals are 99 and 88 % respectively, and increased BOD5/COD index from 0.17 to 0.41. In addition to precipitation coagulation process, adsorptive micellar flocculation mechanism seems contribute to the removal of surfactants and organic matters from this rejection. © Autumn 2006, IRSEN, CEERS, IAU.
引用
收藏
页码:327 / 332
页数:5
相关论文
共 30 条
[1]  
Adak A., Bandyopadhyay M., Pal A., Removal of anionic surfactant from wastewater by alumina: A case study, Colloid. Surface, 254, pp. 165-171, (2005)
[2]  
Al-Momani F., Touraud E., Degorce-Dumas J.R., Roussy J., Thomas O., Biodegradability enhancement of textile dyes and textile wastewater by UV photolysis, J. Photochem. Photo., Chem., 153, pp. 191-197, (2002)
[3]  
Chamarro E., Marco A., Esplugas S., Use of Fenton reagent to improve organic chemical biodegradability, Water Res., 35, pp. 1047-1051, (2001)
[4]  
Chen H.J., Tseng D.H., Huang S.L., Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms, Biores. Technol., 96, pp. 1483-1491, (2005)
[5]  
Dhouib A., Hamad N., Hassairi I., Sayadi S., Degradation of anionic surfactants by Citrobacter braakii, Proc. Biochem., 38, pp. 1245-1250, (2003)
[6]  
Eichhorn P., Flavier M.E., Paje M.L., Knepper T.P., Occurrence and fate of linear and branched alkylbenzene sulfonates and their metabolites in surface waters in Philippines, Sci. Total Environ., 269, pp. 75-85, (2001)
[7]  
Eichhorn P., Rodrigues S.V., Baumann W., Knepper T.P., Incomplete degradation of linear alkylbenzene sulfonate surfactants in Brazilian surface waters and pursuit of their polar metabolites in drinking waters, Sci. Total Environ., 284, pp. 123-134, (2002)
[8]  
Fernandez E., Benito J.M., Pazos C., Coca J., Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions, J. Mem. Sci., 246, pp. 1-6, (2005)
[9]  
Kowalska I., Kabsch-Korbutowicz M., Majewska-Nowak K., Winnicki T., Separation of anionic surfactants on ultrafiltration membranes, Desalination, 162, pp. 33-40, (2004)
[10]  
Lin Y., Smith T.W., Alexandridis P., Adsorption of a polymeric siloxane surfactant on carbon black particles dispersed in mixtures of water with polar organic solvents, J. Coll. Interf. Sci., 255, pp. 1-9, (2002)