Homotopy theory of algebraic quantum field theories

被引:0
作者
Marco Benini
Alexander Schenkel
Lukas Woike
机构
[1] Universität Hamburg,Fachbereich Mathematik
[2] University of Nottingham,School of Mathematical Sciences
来源
Letters in Mathematical Physics | 2019年 / 109卷
关键词
Algebraic quantum field theory; Gauge theory; BRST/BV formalism; Model categories; Colored operads; Homotopy algebras; -algebras; -stacks; 81Txx; 18D50; 18G55; 55U35;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by gauge theory, we develop a general framework for chain complex-valued algebraic quantum field theories. Building upon our recent operadic approach to this subject, we show that the category of such theories carries a canonical model structure and explain the important conceptual and also practical consequences of this result. As a concrete application, we provide a derived version of Fredenhagen’s universal algebra construction, which is relevant e.g. for the BRST/BV formalism. We further develop a homotopy theoretical generalization of algebraic quantum field theory with a particular focus on the homotopy-coherent Einstein causality axiom. We provide examples of such homotopy-coherent theories via (1) smooth normalized cochain algebras on ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-stacks, and (2) fiber-wise groupoid cohomology of a category fibered in groupoids with coefficients in a strict quantum field theory.
引用
收藏
页码:1487 / 1532
页数:45
相关论文
共 62 条
[1]  
Ayala D(2015)Factorization homology of topological manifolds J. Topol. 8 1045-1084
[2]  
Francis J(2017)Quantum field theories on categories fibered in groupoids Commun. Math. Phys. 356 19-174
[3]  
Benini M(2018)The stack of Yang–Mills fields on Lorentzian manifolds Commun. Math. Phys. 359 765-831
[4]  
Schenkel A(2015)Homotopy colimits and global observables in Abelian gauge theory Lett. Math. Phys. 105 1193-584
[5]  
Benini M(2004)Combinatorial operad actions on cochains Math. Proc. Camb. Philos. Soc. 137 135-614
[6]  
Schenkel A(2003)Axiomatic homotopy theory for operads Comment. Math. Helv. 78 805-756
[7]  
Schreiber U(2003)The generally covariant locality principle: a new paradigm for local quantum field theory Commun. Math. Phys. 237 31-721
[8]  
Benini M(2017)Shifted Poisson structures and deformation quantization J. Topol. 10 483-1201
[9]  
Schenkel A(2009)Locally constant functors Math. Proc. Camb. Philos. Soc. 147 593-176
[10]  
Szabo RJ(2013)Dendroidal sets and simplicial operads J. Topol. 6 705-51