Chemiluminescent probes in cancer biology

被引:50
作者
Blau, Rachel [1 ,2 ]
Shelef, Omri [3 ]
Shabat, Doron [3 ]
Satchi-Fainaro, Ronit [1 ,4 ]
机构
[1] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, Tel Aviv, Israel
[2] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA USA
[3] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Chem, Dept Organ Chem, Tel Aviv, Israel
[4] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
来源
NATURE REVIEWS BIOENGINEERING | 2023年 / 1卷 / 09期
基金
欧洲研究理事会; 以色列科学基金会;
关键词
HYDROGEN-PEROXIDE; MYELOPEROXIDASE ACTIVITY; SUPEROXIDE ANION; IN-VITRO; DESIGN; FLUORESCENCE; THERAPY; AGENTS; 1,2-DIOXETANES; NANOPARTICLES;
D O I
10.1038/s44222-023-00074-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Optical imaging technologies that use fluorescence and chemiluminescence probes allow the real-time detection of biological activity in the context of location, time and environment. Optical imaging is particularly important for the diagnosis and investigation of cancer. Chemiluminescence is based on the production of an electronically excited species from reactants followed by the release of visible light. Unlike fluorescence imaging, chemiluminescence does not require light excitation and is thus not limited by autofluorescence and high background signals. In this Review, we discuss the four main types of chemiluminescent probes, that is, luminol and its derivatives, peroxalate esters, phenoxy-1,2-dioxetanes with light emission through energy transfer and phenoxy-1,2-dioxetanes with direct light emission, highlighting their design, mode of action, compatibility and applications in cancer biology, diagnosis and treatment. We outline how these chemiluminophores can act as single-component probes for the in vivo and in vitro detection and imaging of various analytes and enzymes and highlight applications that may benefit from chemiluminescent imaging probes.
引用
收藏
页码:648 / 664
页数:17
相关论文
共 134 条
[1]  
Albrecht H.O.Z., 1928, Phys. Chem, V136, P321, DOI DOI 10.1515/ZPCH-1928-13625
[2]   Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and In Situ Triggerable Photodynamic Therapy of Cancer [J].
An, Huijie ;
Guo, Chunhua ;
Li, Dandan ;
Liu, Renfeng ;
Xu, Xiaoqiu ;
Guo, Jiawei ;
Ding, Jun ;
Li, Jianjun ;
Chen, Wei ;
Zhang, Jianxiang .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (15) :17230-17243
[3]   Bioluminescence imaging: progress and applications [J].
Badr, Christian E. ;
Tannous, Bakhos A. .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (12) :624-633
[4]  
Bakhtiar N, 2016, PAK J MED SCI, V32, P448, DOI 10.12669/pjms.322.9563
[5]   Reactive Oxygen Species in Cancer Biology and Anticancer Therapy [J].
Bazhin, Alexandr V. ;
Philippov, Pavel P. ;
Karakhanova, Svetlana .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
[6]   Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma [J].
Benezra, Miriam ;
Penate-Medina, Oula ;
Zanzonico, Pat B. ;
Schaer, David ;
Ow, Hooisweng ;
Burns, Andrew ;
DeStanchina, Elisa ;
Longo, Valerie ;
Herz, Erik ;
Iyer, Srikant ;
Wolchok, Jedd ;
Larson, Steven M. ;
Wiesner, Ulrich ;
Bradbury, Michelle S. .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (07) :2768-2780
[7]  
Berthold F, 2011, CHEMILUMINESCENCE AND BIOLUMINESCENCE: PAST, PRESENT AND FUTURE, P113
[8]   Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes [J].
Blum, Galia ;
von Degenfeld, Georges ;
Merchant, Milton J. ;
Blau, Helen M. ;
Bogyo, Matthew .
NATURE CHEMICAL BIOLOGY, 2007, 3 (10) :668-677
[9]   Design of an automated flow injection-chemiluminescence instrument incorporating a miniature photomultiplier tube for monitoring picomolar concentrations of iron in seawater [J].
Bowie, AR ;
Achterberg, EP ;
Ussher, S ;
Worsfold, PJ .
JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY, 2005, (02) :37-43
[10]   Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass [J].
Bronsart, Laura L. ;
Stokes, Christian ;
Contag, Christopher H. .
PLOS ONE, 2016, 11 (01)