Trajectory and Global Attractors for a Modified Kelvin–Voigt Model

被引:0
作者
Ustiuzhaninova A.S. [1 ]
Turbin M.V. [1 ]
机构
[1] Voronezh State University, Voronezh
基金
俄罗斯基础研究基金会;
关键词
global attractor; modified Kelvin–Voigt model; trajectory attractor; trajectory space; weak solution;
D O I
10.1134/S1990478921010142
中图分类号
学科分类号
摘要
Abstract: We study the qualitative behavior of weak solutions to an autonomous modifiedKelvin–Voigt model on the base of the theory of attractors for noninvariant trajectory spaces. Forthe model under consideration, we determine the trajectory space, introduce the notions of atrajectory attractor and a global attractor, and prove the existence of these attractors. © 2021, Pleiades Publishing, Ltd.
引用
收藏
页码:158 / 168
页数:10
相关论文
共 10 条
  • [1] Pavlovskii V.A., To the Question of Theoretical Description of Weak Aqueous Solutions of Polymers, Dokl. Akad. Nauk SSSR, 200, 4, pp. 809-812, (1971)
  • [2] Turbin M.V., Ustiuzhaninova A.S., The Existence Theorem for a Weak Solution to Initial-Boundary Value Problem for System of Equations Describing the Motion of Weak Aqueous Polymer Solutions, Russian Math., 63, 8, pp. 54-69, (2019)
  • [3] Plotnikov P.I., Turbin M.V., Ustiuzhaninova A.S., Existence Theorem for a Weak Solution of the Optimal Feedback Control Problem for the Modified Kelvin–Voigt Model of Weakly Concentrated Aqueous Polymer Solutions, Dokl. Math., 100, 2, pp. 433-435, (2019)
  • [4] Zvyagin V., Vorotnikov D., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, (2008)
  • [5] Zvyagin V.G., Kondrat'ev S.K., Attractors of the Equations of Models of Motion of Viscoelastic Media, (2010)
  • [6] Zvyagin V.G., Turbin M.V., Mathematical Problems of Hydrodynamics of Viscoelastic Media, (2012)
  • [7] Simon J., Compact Sets in the Space L<sup>P</sup>(0,T
  • [8] B), Ann. Mat. Pur. Appl, 146, pp. 65-96, (1986)
  • [9] Temam R., Navier–Stokes Equations: Theory and Numerical Analysis, (1979)
  • [10] Zvyagin V.G., Turbin M.V., The Study of Initial-Boundary Value Problems for Mathematical Models of the Motion of Kelvin–Voigt Fluids, J. Math. Sci., 168, pp. 157-308, (2010)