Investigation of high frequency noise generation in the near-nozzle region of a jet using large eddy simulation

被引:0
作者
Ali Uzun
M. Yousuff Hussaini
机构
[1] Florida State University,School of Computational Science
来源
Theoretical and Computational Fluid Dynamics | 2007年 / 21卷
关键词
Jet noise; Shear layers; Large eddy simulation; Computational aeroacoustics; 47.27.nb; 47.27.ep; 47.27.Sd; 47.27.W-; 47.27.N-;
D O I
暂无
中图分类号
学科分类号
摘要
This paper reports on the simulation of the near-nozzle region of an isothermal Mach 0.6 jet at a Reynolds number of 100,000 exhausting from a round nozzle geometry. The flow inside the nozzle and the free jet outside the nozzle are computed simultaneously by a high-order accurate, multi-block, large eddy simulation (LES) code with overset grid capability. The total number of grid points at which the governing equations are solved is about 50 million. The main emphasis of the simulation is to capture the high frequency noise generation that takes place in the shear layers of the jet within the first few diameters downstream of the nozzle exit. Although we have attempted to generate fully turbulent boundary layers inside the nozzle by means of a special turbulent inflow generation procedure, an analysis of the simulation results supports the fact that the state of the nozzle exit boundary layer should be characterized as transitional rather than fully turbulent. This is believed to be most likely due to imperfections in the inflow generation method. Details of the computational methodology are presented together with an analysis of the simulation results. A comparison of the far field noise spectrum in the sideline direction with experimental data at similar flow conditions is also carried out. Additional noise generation due to vortex pairing in the region immediately downstream of the nozzle exit is also observed. In a second simulation, the effect of the nozzle exit boundary layer thickness on the vortex pairing Strouhal frequency (based on nozzle diameter) and its harmonics is demonstrated. The limitations and deficiencies of the present study are identified and discussed. We hope that the lessons learned in this study will help guide future research activities towards resolving the pending issues identified in this work.
引用
收藏
页码:291 / 321
页数:30
相关论文
共 75 条
  • [1] Andersson N.(2005)Investigation of an isothermal Mach 0.75 jet and its radiated sound using large-eddy simulation and Kirchhoff surface integration Int. J. Heat Fluid Flow 26 393-410
  • [2] Eriksson L.E.(2005)Large-eddy simulation of subsonic turbulent jets and their radiated sound AIAA J. 43 1899-1912
  • [3] Davidson L.(2003)Optimized prefactored compact schemes J. Comput. Phys. 190 459-457
  • [4] Andersson N.(1978)An implicit factored scheme for the compressible Navier–Stokes equations AIAA J. 16 393-402
  • [5] Eriksson L.E.(1987)Roles of initial condition and vortex pairing in jet noise J. Sound Vibrat. 117 289-311
  • [6] Davidson L.(1994)Effects of the computational time step on numerical solutions of turbulent flow J. Comput. Phys. 113 1-4
  • [7] Ashcroft G.(2002)A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions J. Comput. Phys. 183 165-186
  • [8] Zhang X.(2002)Large-eddy simulation of a turbulent compressible round jet AIAA J. 40 1346-1354
  • [9] Beam R.M.(1997)On boundary conditions for acoustic computations in non-uniform mean flows J. Comput. Acoust. 5 297-315
  • [10] Warming R.F.(1999)Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics J. Comput. Phys. 156 272-299