Homothetical Surfaces in Three Dimensional Pseudo–Galilean Spaces Satisfying ΔIIxi=λixi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{II}\mathbf{x }_i=\lambda _i\mathbf{x }_i$$\end{document}

被引:0
作者
Mohamd Saleem Lone
机构
[1] Tata Institute of Fundamental Research,International Centre for Theoretical Sciences
关键词
Homothetical surface; Finite type surface; Laplacian operator; Pseudo-Galilean space; Primary 53A35; Secondary 53B30; 53A40;
D O I
10.1007/s00006-019-1007-7
中图分类号
学科分类号
摘要
A homothetical surface arises as a graph of a function z=φ1(v1)φ2(v2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z = \varphi _1(v_1) \varphi _2(v_2)$$\end{document}. In this paper, we study the homothetical surfaces in three dimensional pseudo-Galilean spaceG31\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \mathbb {G}_3^1\right) $$\end{document} satisfying the conditions ΔIIxi=λixi,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{II}\mathbf{x }_i=\lambda _i\mathbf{x }_i,$$\end{document} where ΔII\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^{II}$$\end{document} is the Laplacian with respect to second fundamental form. In particular, we show the non-existence of any such type of surface in G31.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {G}_3^1.$$\end{document}
引用
收藏
相关论文
共 35 条
[1]  
Alias LJ(1992)Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying Pac. J. Math. 156 201-208
[2]  
Ferrandez A(2018)Non-zero constant curvature factorable surfaces in pseudo-Galilean space Commun. Korean Math. Soc. 33 247-259
[3]  
Lucas P(2015)Classification of factorable surfaces in the pseudo-Galilean space Glasnik Math. 70 441-451
[4]  
Aydin ME(1993)On the Gauss map of helicoidal surfaces Rend. Sem. Math. Messina Ser. II 2 31-42
[5]  
Kulahci M(2012)Translation surfaces in the 3-dimensional space satisfying J. Geom. 103 367-374
[6]  
Öǧrenmiş AO(2012)Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying J. Geom. 103 17-29
[7]  
Aydin ME(1996)A report on submanifold of fnite type Soochow J. Math. 22 117-337
[8]  
Öǧrenmiş AO(1995)On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space Tsukuba J. Math. 19 351-367
[9]  
Ergüt M(1990)On surfaces of fnite type in Euclidean 3-space Kodai Math. J. 13 10-21
[10]  
Baikoussis C(2008)Some special surfaces in the pseudo-Galilean space Acta Math. Hung. 118 209-226