Normalized solutions for a class of nonlinear Choquard equations

被引:62
作者
Bartsch, Thomas [1 ]
Liu, Yanyan [2 ]
Liu, Zhaoli [2 ]
机构
[1] Justus Liebig Univ Giessen, Math Inst, Arndstr 2, D-35392 Giessen, Germany
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2020年 / 1卷 / 05期
基金
中国国家自然科学基金;
关键词
Choquard equation; Stretched functional; Normalized solution; SCHRODINGER-POISSON; PRESCRIBED NORM; EXISTENCE; MULTIPLICITY;
D O I
10.1007/s42985-020-00036-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a least energy solution to the problem - Delta u - ( I alpha & lowast; F ( u ) ) f ( u ) = lambda u in R N , integral R N u 2 ( x ) d x = a 2 , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u-(I_{\alpha }*F(u))f(u)=\lambda u\ \text { in }\ {\mathbb {R}}<^>{N},\quad \int _{{\mathbb {R}}<^>N}u<^>2(x)dx = a<^>2, \end{aligned}$$\end{document} where N >= 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 1$$\end{document} , alpha is an element of ( 0 , N ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document} , F ( s ) : = integral 0 s f ( t ) d t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(s):=\int _{0}<^>{s}f(t)dt$$\end{document} , and I alpha : R N -> R \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\alpha }:{\mathbb {R}}<^>{N}\rightarrow {\mathbb {R}}$$\end{document} is the Riesz potential. If f is odd in u then we prove the existence of infinitely many normalized solutions.
引用
收藏
页数:25
相关论文
共 32 条
[1]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[2]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[3]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[4]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[5]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[6]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[7]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248
[10]   Positive and sign changing solutions to a nonlinear Choquard equation [J].
Clapp, Monica ;
Salazar, Dora .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :1-15