A classification of certain codimension one locally free actions of nilpotent Lie groups up to a differentiable orbital conjugacy

被引:0
作者
Michel Belliart
机构
[1] Université Lille I,laboratoire de mathématiques Paul Painlevé CNRS UMR 8524 Département de Mathématiques
来源
Israel Journal of Mathematics | 2020年 / 236卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simply connected nilpotent Lie group, let M be a compact connected manifold with dim(M) = dim(G)+1 and let Φ be a C∞ locally free action of G on M. If G admits no lattice and if the centralizer in G of its derived group G′ is the center of G′, then Φ is differentiably orbitally conjugated to a homogeneous action of the same kind.
引用
收藏
页码:279 / 304
页数:25
相关论文
共 10 条
  • [1] Asaoka M(2012)Nonhomogeneous locally free actions of the affine group Annals of Mathematics 175 1-21
  • [2] Belliart M(2011)Actions localement libres rigides de groupes de Lie nilpotents L’enseignement Mathématique 57 349-372
  • [3] Ghys E(1985)Actions localement libres du groupe affine Inventiones Mathematicae 82 479-526
  • [4] Ghys E(2001)Groups acting on the circle L’enseignement mathématique 47 329-407
  • [5] Ghys E(1989)On codimension one nilfoliations and a theorem of Mal’cev Topology 28 197-210
  • [6] Hector G(1975)A cohomology for foliated manifolds Commentarii Mathematici Helvetici 50 197-218
  • [7] Moriyama Y(2010)On closed manifolds which admit codimension one locally free actions of nilpotent Lie groups Hokkaido Mathematical Journal 39 57-66
  • [8] Heitsch J L(1954)On the cohomology of compact homogeneous spaces of nilpotent Lie groups Annals of Mathematics 59 531-538
  • [9] Moriyama Y(undefined)undefined undefined undefined undefined-undefined
  • [10] Nomizu K(undefined)undefined undefined undefined undefined-undefined