Sample Path Properties of Generalized Random Sheets with Operator Scaling

被引:0
作者
Ercan Sönmez
机构
[1] University of Klagenfurt,Department of Statistics
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Fractional random fields; Stable random sheets; Operator scaling; Selfsimilarity; Box-counting dimension; Hausdorff dimension; Primary 60G60; Secondary 28A78; 28A80; 60G17; 60G52;
D O I
暂无
中图分类号
学科分类号
摘要
We consider operator scaling α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable random sheets, which were introduced in Hoffmann (Operator scaling stable random sheets with application to binary mixtures. Dissertation Universität Siegen, 2011). The idea behind such fields is to combine the properties of operator scaling α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable random fields introduced in Biermé et al. (Stoch Proc Appl 117(3):312–332, 2007) and fractional Brownian sheets introduced in Kamont (Probab Math Stat 16:85–98, 1996). We establish a general uniform modulus of continuity of such fields in terms of the polar coordinates introduced in Biermé et al. (2007). Based on this, we determine the box-counting dimension and the Hausdorff dimension of the graph of a trajectory over a non-degenerate cube I⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I \subset {\mathbb {R}}^d$$\end{document}.
引用
收藏
页码:1279 / 1298
页数:19
相关论文
共 30 条
  • [1] Anders D(2011)Application of operator-scaling anisotropic random fields to binary mixtures Phil. Mag. 91 3766-3792
  • [2] Hoffmann A(2004)Hausdorff dimension of the graph of the fractional Brownian sheet Rev. Mat. Iberoamericana 20 395-412
  • [3] Scheffler HP(2005)Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets J. Fourier Anal. Appl. 11 407-439
  • [4] Weinberg K(2007)Operator scaling stable random fields Stoch. Proc. Appl. 117 312-332
  • [5] Ayache A(2009)Hölder regularity for operator scaling stable random fields Stoch. Proc. Appl. 119 2222-2248
  • [6] Ayache A(2015)Modulus of continuity of some conditionally sub-Gaussian fields, application to stable random fields Bernoulli 21 1719-1759
  • [7] Xiao Y(2003)Anisotropic analysis of some Gaussian models J. Fourier Anal. Appl. 9 215-236
  • [8] Biermé H(2006)From Rocky Mount. J. Math. 36 1249-1284
  • [9] Meerschaert MM(1996) parameter fractional Brownian motions to Probab. Math. Stat. 16 85-98
  • [10] Scheffler HP(1940) parameter multifractional Brownian motions C. R. Acad. Sci. URSS 26 115-118