Self-adjoint extensions of differential operators on Riemannian manifolds

被引:0
作者
Ognjen Milatovic
Françoise Truc
机构
[1] University of North Florida,Department of Mathematics and Statistics
[2] Grenoble University,Unité mixte de recherche CNRS
来源
Annals of Global Analysis and Geometry | 2016年 / 49卷
关键词
Essential self-adjointness; Hermitian vector bundle; Higher-order differential operator; Riemannian manifold; Primary 58J50; 35P05; Secondary 47B25;
D O I
暂无
中图分类号
学科分类号
摘要
We study H=D∗D+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=D^*D+V$$\end{document}, where D is a first order elliptic differential operator acting on sections of a Hermitian vector bundle over a Riemannian manifold M, and V is a Hermitian bundle endomorphism. In the case when M is geodesically complete, we establish the essential self-adjointness of positive integer powers of H. In the case when M is not necessarily geodesically complete, we give a sufficient condition for the essential self-adjointness of H, expressed in terms of the behavior of V relative to the Cauchy boundary of M.
引用
收藏
页码:87 / 103
页数:16
相关论文
共 30 条
[1]  
Bandara L(2014)Density problems on vector bundles and manifolds Proc. Am. Math. Soc. 142 2683-2695
[2]  
Braverman M(1998)On self-adjointness of Schrödinger operator on differential forms Proc. Am. Math. Soc. 126 617-623
[3]  
Braverman M(2002)Essential self-adjointness of Schrödinger-type operators on manifolds Russ. Math. Surv. 57 641-692
[4]  
Milatovic O(1973)Essential self-adjointness of powers of generators of hyperbolic equations J. Funct. Anal. 12 401-414
[5]  
Shubin M(1977)Schrödinger and Dirac operators with singular potentials and hyperbolic equations Pac. J. Math. 72 361-382
[6]  
Chernoff P(1973)Self-adjointness of the Beltrami–Laplace operator on a complete paracompact manifold without boundary Ukr. Math. J. 25 784-791
[7]  
Chernoff P(2010)Confining quantum particles with a purely magnetic field Ann. Inst. Fourier (Grenoble) 60 2333-2356
[8]  
Chumak AA(1972)Self-adjointness of powers of elliptic operators on non-compact manifolds Math. Ann. 195 257-272
[9]  
Colin de Verdière Y(1992)On essential selfadjointness of powers and comparison algebras. Festschrift on the occasion of the 70th birthday of Shmuel Agmon J. Anal. Math. 58 61-97
[10]  
Truc F(1954)A special Stokes’s theorem for complete Riemannian manifolds Ann. Math. 60 140-145