Extremal problems for Steklov eigenvalues on annuli

被引:0
|
作者
Xu-Qian Fan
Luen-Fai Tam
Chengjie Yu
机构
[1] Jinan University,Department of Mathematics
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences and Department of Mathematics
[3] Shantou University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 54卷
关键词
Primary 35P15; Secondary 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain supremum of the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-th normalized Steklov eigenvalues of all rotationally symmetric conformal metrics on [0,T]×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \mathbb {S}^1$$\end{document}, k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}. This generalizes the corresponding result of Fraser and Schoen for the case k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}. We give geometric description in terms of minimal surfaces for metrics attaining the supremum. We obtain some results on the comparison of the normalized Steklov eigenvalues of rotationally symmetric metrics and general conformal metrics on [0,T]×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \mathbb {S}^1$$\end{document}. We also construct an example of a conformal metric on [0,T]×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \mathbb {S}^1$$\end{document} whose first normalized Steklov eigenvalue is larger than that of the corresponding rotationally symmetric conformal metric.
引用
收藏
页码:1043 / 1059
页数:16
相关论文
共 50 条
  • [1] Extremal problems for Steklov eigenvalues on annuli
    Fan, Xu-Qian
    Tam, Luen-Fai
    Yu, Chengjie
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 1043 - 1059
  • [2] COMPUTATIONAL METHODS FOR EXTREMAL STEKLOV PROBLEMS
    Akhmetgaliyev, Eldar
    Kao, Chiu-Yen
    Osting, Braxton
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (02) : 1226 - 1240
  • [3] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [4] Extremal problems for Fredholm eigenvalues
    Krushkal, Samuel
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 172 (01) : 279 - 307
  • [5] Extremal problems for Fredholm eigenvalues
    Samuel Krushkal
    Israel Journal of Mathematics, 2009, 172 : 279 - 307
  • [6] A Survey on Extremal Problems of Eigenvalues
    Yan, Ping
    Zhang, Meirong
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [7] Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems
    Alexandre Girouard
    Mikhail Karpukhin
    Jean Lagacé
    Geometric and Functional Analysis, 2021, 31 : 513 - 561
  • [8] CONTINUITY OF EIGENVALUES AND SHAPE OPTIMISATION FOR LAPLACE AND STEKLOV PROBLEMS
    Girouard, Alexandre
    Karpukhin, Mikhail
    Lagace, Jean
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (03) : 513 - 561
  • [9] Numerical calculation of extremal Steklov eigenvalues in 3D and 4D
    Antunes, Pedro R. S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 104 : 50 - 58
  • [10] Exterior Steklov eigenvalues and modified exterior Steklov eigenvalues in inverse scattering
    Li, Yuan
    INVERSE PROBLEMS, 2020, 36 (10)