Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions

被引:0
作者
Antanas Laurinčikas
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Šiauliai University,Faculty of Technology, Physical and Biomedical Sciences
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
Dirichlet ; -functions; discrete universality; joint universality; uniform distribution modulo 1; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [41] Discrepancy bounds for distribution of automorphic L-functions
    Xuanxuan Xiao
    Shuai Zhai
    Lithuanian Mathematical Journal, 2021, 61 : 550 - 563
  • [42] Weighted one-level density of low-lying zeros of Dirichlet L-functions
    Shingo Sugiyama
    Ade Irma Suriajaya
    Research in Number Theory, 2022, 8
  • [43] On the 2m-th power mean of Dirichlet L-functions with the weight of trigonometric sums
    Rong Ma
    Junhuai Zhang
    Yulong Zhang
    Proceedings - Mathematical Sciences, 2009, 119 : 411 - 421
  • [44] Distribution modulo 1 and the discrete universality of the Riemann zeta-function
    Dubickas, Arturas
    Laurincikas, Antanas
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2016, 86 (01): : 79 - 87
  • [45] Distribution modulo 1 and the discrete universality of the Riemann zeta-function
    Artūras Dubickas
    Antanas Laurinčikas
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2016, 86 : 79 - 87
  • [46] Value-distribution of twisted automorphic L-functions
    A. Kolupayeva
    A. Laurinčikas
    Lithuanian Mathematical Journal, 2008, 48 : 203 - 211
  • [47] Lower bounds for the moments of the derivatives of the Riemann zeta-function and Dirichlet L-functions
    Keiju Sono
    Lithuanian Mathematical Journal, 2012, 52 : 420 - 434
  • [49] Value distribution of L-functions and uniqueness questions of F. Gross*
    Qian-Qian Yuan
    Xiao-Min Li
    Hong-Xun Yi
    Lithuanian Mathematical Journal, 2018, 58 : 249 - 262
  • [50] The sixth moment of the family of Γ1(q)-automorphic L-functions
    Goran Djanković
    Archiv der Mathematik, 2011, 97 : 535 - 547