Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions

被引:0
|
作者
Antanas Laurinčikas
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Šiauliai University,Faculty of Technology, Physical and Biomedical Sciences
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
Dirichlet ; -functions; discrete universality; joint universality; uniform distribution modulo 1; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [31] The Euler numbers and recursive properties of Dirichlet L-functions
    Yiwei Hou
    Shimeng Shen
    Advances in Difference Equations, 2018
  • [32] q-Dirichlet type L-functions with weight α
    Hacer Ozden
    Advances in Difference Equations, 2013
  • [33] Sum of the Dirichlet L-functions over nontrivial zeros of another Dirichlet L-function
    R. Garunkštis
    J. Kalpokas
    J. Steuding
    Acta Mathematica Hungarica, 2010, 128 : 287 - 298
  • [34] Approximation by Shifts of Compositions of Dirichlet L-Functions with the Gram Function
    Dubickas, Arturas
    Garunkstis, Ramunas
    Laurincikas, Antanas
    MATHEMATICS, 2020, 8 (05)
  • [35] The twisted mean square and critical zeros of Dirichlet L-functions
    Xiaosheng Wu
    Mathematische Zeitschrift, 2019, 293 : 825 - 865
  • [36] Second moments of Dirichlet L-functions weighted by Kloosterman sums
    Tingting Wang
    Czechoslovak Mathematical Journal, 2012, 62 : 655 - 661
  • [37] The fourth moment of derivatives of Dirichlet L-functions in function fields
    Julio Cesar Andrade
    Michael Yiasemides
    Mathematische Zeitschrift, 2021, 299 : 671 - 697
  • [38] On Zeros of Some Combinations of Dirichlet L-Functions and Hurwitz Zeta-Functions
    Garbaliauskiene, Virginija
    Karaliunaite, Julija
    Laurincikas, Antanas
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (06) : 733 - 749
  • [39] Distribution modulo 1 and universality of the Hurwitz zeta-function
    Laurincikas, Antanas
    JOURNAL OF NUMBER THEORY, 2016, 167 : 294 - 303
  • [40] Moments of L-functions attached to the twist of modular form by Dirichlet characters
    Guanghua Ji
    Haiwei Sun
    Chinese Annals of Mathematics, Series B, 2015, 36 : 237 - 252