Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions

被引:0
|
作者
Antanas Laurinčikas
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Šiauliai University,Faculty of Technology, Physical and Biomedical Sciences
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
Dirichlet ; -functions; discrete universality; joint universality; uniform distribution modulo 1; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [11] UNIFORM DISTRIBUTION MODULO 1 AND THE UNIVERSALITY OF ZETA-FUNCTIONS OF CERTAIN CUSP FORMS
    Laurincikas, Antanas
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 100 (114): : 131 - 140
  • [12] Selberg’s orthonormality conjecture and joint universality of L-functions
    Yoonbok Lee
    Takashi Nakamura
    Łukasz Pańkowski
    Mathematische Zeitschrift, 2017, 286 : 1 - 18
  • [13] Selberg's orthonormality conjecture and joint universality of L-functions
    Lee, Yoonbok
    Nakamura, Takashi
    Pankowski, Lukasz
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 1 - 18
  • [14] On special values of certain Dirichlet L-functions
    Sanoli Gun
    B. Ramakrishnan
    The Ramanujan Journal, 2008, 15 : 275 - 280
  • [15] Some notes on identities for Dirichlet L-functions
    Rong Ma
    Yu Long Zhang
    Melchior Grützmann
    Acta Mathematica Sinica, English Series, 2014, 30 : 747 - 754
  • [16] The third moment of quadratic Dirichlet L-functions
    Matthew P. Young
    Selecta Mathematica, 2013, 19 : 509 - 543
  • [17] The universality theorem for Hecke L-functions
    Yoonbok Lee
    Mathematische Zeitschrift, 2012, 271 : 893 - 909
  • [18] Nonvanishing of Dirichlet L-functions, II
    Rizwanur Khan
    Djordje Milićević
    Hieu T. Ngo
    Mathematische Zeitschrift, 2022, 300 : 1603 - 1613
  • [19] On Dirichlet L-functions with periodic coefficients and Eisenstein series
    Emre Alkan
    Monatshefte für Mathematik, 2011, 163 : 249 - 280
  • [20] A SURVEY ON THE THEORY OF UNIVERSALITY FOR ZETA AND L-FUNCTIONS
    Matsumoto, Kohji
    NUMBER THEORY: PLOWING AND STARRING THROUGH HIGH WAVE FORMS, 2015, 11 : 95 - 144