A Comparative Analysis of Nanofluid and Hybrid Nanofluid Flow Through Endoscope

被引:0
作者
T. Salahuddin
Abdul Mosan Bashir
Mair Khan
Yu-Ming Chu
机构
[1] Mirpur university of science and technology,Department of Mathematics
[2] Quaid-I-Azam University 45320,Department of Mathematics
[3] Huzhou University,Department of Mathematics
来源
Arabian Journal for Science and Engineering | 2022年 / 47卷
关键词
Nanofluid; Hybrid nanofluid; Endoscope; Heat generation;
D O I
暂无
中图分类号
学科分类号
摘要
A mathematical model is used to discuss a comparative study of AA7072 (nanofluid) and AA7072/AA7075 (hybrid nanofluid) flow through endoscope. For this evaluation, AA7072 (which is the combination of Al (98%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(98\%) $$\end{document} and Zn (1%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\%)$$\end{document} mixed with metals Si, Fe and Cu) and AA7075 (which is the mixture of Al (90%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(90\%)$$\end{document}, Zn (6%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6\%)$$\end{document}, Mg (3%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3\%)$$\end{document} and Cu (1%)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\%)$$\end{document} mixed with metals Si, Fe and Mg) are considered as nanoparticles and water as a base fluid. The inner cylinder is endoscope (rigid and fixed) moving with constant velocity (V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{(V)}$$\end{document}, while the external cylinder is sinusoidal (wave moving down to its boundaries) like the shape of artery in the form of concentration and relaxation phenomena. Low Reynolds number and long wavelength estimation is applied for analytic solution. The resulting nonlinear PDEs are transformed into ODEs by perturbation technique. After this, we compare graphically the behavior of nanofluid and hybrid nanofluids for velocity profile, temperature profile, friction forces on inner and outer cylinders, pressure gradient and pressure rise for different values of solid volume fractions and inner cylinder radius.
引用
收藏
页码:1033 / 1042
页数:9
相关论文
共 120 条
[1]  
Choi SUS(1995)Enhancing thermal conductivity of fluids with nanoparticles. Developments and applications of Non-Newtonian flows ASME 66 99-105
[2]  
Sourtiji E(2011)Effect of water-based Int. Commun. Heat Mass Transf. 38 1125-1134
[3]  
Hosseinizadeh SF(2013) nanofluids on heat transfer and pressure drop in periodic mixed convection inside a square ventilated cavity Eng. Appl. Comput. Fluid Mech. 7 55-65
[4]  
Gorji-Bandpy M(2013)evaluation of mixed convection in inclined square liddriven cavity filled with Int. Commun. Heat Mass Transf. 41 41-46
[5]  
Ganji DD(2014)/water nano-fluid Appl. Math. Mech. 35 63-72
[6]  
Fereidoon A(2016)Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Case Stud. Therm. Eng. 8 311-321
[7]  
Saedodin S(2015) and CuO nanofluid Appl. Math. Mech. (Engl. Ed.) 258 125-133
[8]  
Esfe MH(2014)Numerical solutions to heat transfer of nanofluid flow over stretching sheet subjected to variations of nanoparticle volume fraction and wall temperature Powder Technol. 383 1187-1198
[9]  
Noroozi MJ(2015)Numerical case study of packed sphere wicked heat pipe using Bound. Value Probl. 82 49-62
[10]  
Sundar LS(2017) and CuO based water nano fluid Int. J. Appl. Comput. Math. 244 309-321