Strong stability preserving implicit and implicit–explicit second derivative general linear methods with RK stability

被引:0
作者
Afsaneh Moradi
Ali Abdi
Gholamreza Hojjati
机构
[1] University of Tabriz,Faculty of Mathematical Sciences
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
General linear methods; Second derivative methods; Monotonicity; Strong stability preserving; Implicit methods.; 65L05;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we use a formulation based on forward Euler and backward derivative condition to obtain A-stable SSP implicit SGLMs up to order five and stage order q=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p$$\end{document} and SSP implicit–explicit (IMEX) SGLMs where the implicit part of the method is A-stable and the time-step is apart from the explicit part. These kind of methods compared to explicit ones of the same order and number of stages have quite larger SSP time-step. Moreover, the construction of SSP IMEX schemes of order p=q=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=q=s$$\end{document} and r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} up to order p=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=3$$\end{document} is presented where the implicit part of the method has Runge–Kutta stability together with A-stability property. Numerical results to show the expected order of convergence of the proposed methods are presented on a variety of linear and nonlinear problems.
引用
收藏
相关论文
共 67 条
[1]  
Abdi A(2011)Maximal order for second derivative general linear methods with Runge–Kutta stability Appl Numer Math 61 1046-1058
[2]  
Hojjati G(2001)Numerical study of Fisher’s reaction-diffusion equation by the Sinc collocation method J Comput Appl Math 137 245-255
[3]  
Al-Khaled K(2018)Construction of the Nordsieck second derivative methods with RK stability for stiff ODEs Comput Appl Math 37 5098-5112
[4]  
Behzad B(2005)Second derivative methods with RK stability Numer Algor 40 415-429
[5]  
Ghazanfari B(2018)Strong stability preserving general linear methods with Runge–Kutta stability J Sci Comput 76 943-968
[6]  
Abdi A(2016)Explicit strong stability preserving multistage two derivative time-stepping schemes J Sci Comput 68 914-942
[7]  
Butcher JC(2020)Two-derivative error inhibiting schemes and enhanced error inhibiting schemes SIAM J Numer Anal 58 3197-3225
[8]  
Hojjati G(1963)A special stability problem for linear multistep methods BIT 3 2743-219
[9]  
Califano G(2004)An extension and analysis of the Shu–Osher representation of Runge–Kutta methods Math Comput 74 201-279
[10]  
Izzo G(2005)Stepsize restrictions for the total-variation-boundedness in general Runge–Kutta procedures Appl Numer Math 53 265-1686