Characteristic classes for families of bundles

被引:0
作者
Alexander Berglund
机构
[1] Stockholm University,Department of Mathematics
来源
Selecta Mathematica | 2022年 / 28卷
关键词
55R40; 57R20; 55P62;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Miller–Morita–Mumford classes of a manifold bundle with fiber M depend only on the underlying τM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _M$$\end{document}-fibration, meaning the family of vector bundles formed by the tangent bundles of the fibers. This motivates a closer study of the classifying space for τM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _M$$\end{document}-fibrations, Baut(τM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Baut(\tau _M)$$\end{document}, and its cohomology ring, i.e., the ring of characteristic classes of τM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _M$$\end{document}-fibrations. For a bundle ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} over a simply connected Poincaré duality space, we construct a relative Sullivan model for the universal ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}-fibration with holonomy in a given connected monoid, together with explicit cocycle representatives for the characteristic classes of the canonical bundle over its total space. This yields tools for computing the rational cohomology ring of Baut(ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Baut(\xi )$$\end{document} as well as the subring generated by the generalized Miller–Morita–Mumford classes. To illustrate, we carry out sample computations for spheres and complex projective spaces. We discuss applications to tautological rings of simply connected manifolds and to the problem of deciding whether a given τM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _M$$\end{document}-fibration comes from a manifold bundle.
引用
收藏
相关论文
共 42 条
[1]  
Berglund A(2015)Rational homotopy theory of mapping spaces via Lie theory for Homol. Homotopy Appl. 17 343-369
[2]  
Berglund A(2020)-algebras Doc. Math. 25 239-265
[3]  
Berglund A(2013)Rational models for automorphisms of fiber bundles Pure Appl. Math. Q. 9 1-48
[4]  
Madsen I(2020)Homological stability of diffeomorphism groups Acta Math. 224 67-185
[5]  
Berglund A(2005)Rational homotopy theory of automorphisms of manifolds Adv. Math. 193 18-39
[6]  
Madsen I(2006)André–Quillen cohomology and rational homotopy of function spaces Ann. Inst. Fourier (Grenoble) 56 815-838
[7]  
Block J(2008)Basic constructions in rational homotopy theory of function spaces Comment. Math. Helv. 83 723-739
[8]  
Lazarev A(1982)The rational homotopy Lie algebra of function spaces Trans. Am. Math. Soc. 269 1-38
[9]  
Buijs U(1963)Geometric transfer and the homotopy type of the automorphism groups of a manifold Ann. Math. (2) 78 223-255
[10]  
Murillo A(2017)Partitions of unity in the theory of fibrations Compos. Math. 153 851-866