The Viscosity Method for the Homogenization of Soft Inclusions

被引:0
作者
Ki-ahm Lee
Minha Yoo
机构
[1] Seoul National University,Department of Mathematical Science
[2] Korea Institute for Advanced Study,undefined
来源
Archive for Rational Mechanics and Analysis | 2012年 / 206卷
关键词
Viscosity Solution; Compatibility Condition; Comparison Principle; Perforated Domain; Uniform Ellipticity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider periodic soft inclusions Tε with periodicity ε, where the solution, uε, satisfies semi-linear elliptic equations of non-divergence in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega_{\epsilon}=\Omega\setminus \overline{T}_\epsilon}$$\end{document} with Neumann data on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial T^{\mathfrak a}}$$\end{document}. The difficulty lies in the non-divergence structure of the operator where the standard energy method, which is based on the divergence theorem, cannot be applied. The main object is to develop a viscosity method to find the homogenized equation satisfied by the limit of uε, referred to as u, as ε approaches to zero. We introduce the concept of a compatibility condition between the equation and the Neumann condition on the boundary for the existence of uniformly bounded periodic first correctors. The concept of a second corrector is then developed to show that the limit, u, is the viscosity solution of a homogenized equation.
引用
收藏
页码:297 / 332
页数:35
相关论文
共 14 条
[1]  
Crandall M.G.(1992)User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc. (N.S.) 27 1-67
[2]  
Ishii H.(2008)Viscosity method for homogenization of highly oscillating obstacles Indiana Univ. Math. J. 57 1715-1742
[3]  
Lions P.-L.(2005)Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media Commun. Pure Appl. Math. 58 319-361
[4]  
Caffarelli L.(1992)Periodic homogenisation of certain fully nonlinear partial differential equations Proc. Roy. Soc. Edinburgh Sect. A 120 245-265
[5]  
Lee K.(2003)Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting Commun. Pure Appl. Math. 56 1501-1524
[6]  
Caffarelli L.A.(1986)Nonlinear oblique boundary value problems for nonlinear elliptic equations Trans. Am. Math. Soc. 295 509-546
[7]  
Souganidis P.E.(1989)A general convergence result for a functional related to the theory of homogenization SIAM J. Math. Anal. 20 608-623
[8]  
Wang L.(undefined)undefined undefined undefined undefined-undefined
[9]  
Evans L.C.(undefined)undefined undefined undefined undefined-undefined
[10]  
Lions P.-L.(undefined)undefined undefined undefined undefined-undefined