Markov chains on Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}^+}$$\end{document}: analysis of stationary measure via harmonic functions approach

被引:0
作者
Denis Denisov
Dmitry Korshunov
Vitali Wachtel
机构
[1] University of Manchester,
[2] Lancaster University,undefined
[3] University of Augsburg,undefined
关键词
Transition kernel; Harmonic function; Markov chain; Stationary distribution; Renewal function; Exponential change of measure; Queues; 60J10; 60J45; 60K25; 60F10; 31C05;
D O I
10.1007/s11134-019-09602-5
中图分类号
学科分类号
摘要
We suggest a method for constructing a positive harmonic function for a wide class of transition kernels on Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}^+}$$\end{document}. We also find natural conditions under which this harmonic function has a positive finite limit at infinity. Further, we apply our results on harmonic functions to asymptotically homogeneous Markov chains on Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}^+}$$\end{document} with asymptotically negative drift which arise in various queueing models. More precisely, assuming that the Markov chain satisfies Cramér’s condition, we study the tail asymptotics of its stationary distribution. In particular, we clarify the impact of the rate of convergence of chain jumps towards the limiting distribution.
引用
收藏
页码:265 / 295
页数:30
相关论文
共 14 条
[1]  
Bertoin J(1994)On conditioning a random walk to stay nonnegative Ann. Probab. 22 2152-2167
[2]  
Doney R(1997)Large-deviation probabilities for one-dimensional Markov chains. Part 1: stationary distributions Theory Probab. Appl. 41 1-24
[3]  
Borovkov AA(1996)On a class of one-dimensional random walks Markov Process. Relat. Fields 2 349-362
[4]  
Korshunov D(2006)On the existence of a regularly varying majorant of an integrable monotone function Math. Notes 76 129-133
[5]  
Boxma OJ(1998)The Martin boundary and ratio limit theorems for killed random walks J. Lond. Math. Soc. 58 761-768
[6]  
Lotov VI(2012)Constructing a harmonic function for an irreducible nonnegative matrix with convergence parameter Bull. Lond. Math. Soc. 44 533-544
[7]  
Denisov DE(2008)The key renewal theorem for a transient Markov chain J. Theoret. Probab. 21 234-245
[8]  
Doney R(1953)Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain Ann. Math. Stat. 24 338-354
[9]  
Foley RD(1952)The theory of queues with a single server Proc. Camb. Philos. Soc. 48 277-289
[10]  
McDonald DR(1964)Eigenvalues of non-negative matrices Ann. Math. Stat. 35 1797-1800