Visualization maps based on SOM to analyze MIMO systems

被引:0
|
作者
J. J. Fuertes
M. Domínguez
I. Díaz
M. A. Prada
A. Morán
S. Alonso
机构
[1] Universidad de León,Instituto de Automática y Fabricación
[2] Grupo de Investigación SUPPRESS,Área de Ingeniería de Sistemas y Automática
[3] Universidad de Oviedo,undefined
来源
Neural Computing and Applications | 2013年 / 23卷
关键词
Self-organizing map; Industrial processes; Information visualization; Dynamics; MIMO system;
D O I
暂无
中图分类号
学科分类号
摘要
Knowledge extraction from large amounts of data is an effective approach for analysis and monitoring of industrial processes. The self-organizing map (SOM) is a useful method for this purpose, because it is able to discover low-dimensional structures on high-dimensional spaces and produce a mapping on an ordered low-dimensional space that can be visualized and preserves the most important relationships. With the aim to extract knowledge about the dynamics of industrial processes, we define 2D SOM maps that represent dynamic features which are useful for usual tasks in control engineering such as the analysis of the time response, the coupling among variables, or the difficulties in control of MIMO (multiple-input and multiple-output) systems. Those new maps make it possible to discover, increase or confirm knowledge about the system, spanned through the entire operation range. A well-known quadruple-tank MIMO system was used to test the usefulness of these maps. First, we perform an analysis of the theoretical dynamic behaviors obtained from the physical equations of the system. After that, we carry out an analysis of experimental data from an industrial pilot plant.
引用
收藏
页码:1407 / 1419
页数:12
相关论文
共 50 条
  • [1] Visualization maps based on SOM to analyze MIMO systems
    Fuertes, J. J.
    Dominguez, M.
    Diaz, I.
    Prada, M. A.
    Moran, A.
    Alonso, S.
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (05): : 1407 - 1419
  • [2] Application of SOM-Based Visualization Maps for Time-Response Analysis of Industrial Processes
    Prada, Miguel A.
    Dominguez, Manuel
    Diaz, Ignacio
    Fuertes, Juan J.
    Reguera, Perfecto
    Moran, Antonio
    Alonso, Serafin
    ARTIFICIAL NEURAL NETWORKS-ICANN 2010, PT II, 2010, 6353 : 392 - +
  • [3] Improvement of data visualization based on SOM
    Shao, C
    Huang, HK
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2, 2004, 3174 : 707 - 712
  • [4] SOM BASED ARTISTIC STYLES VISUALIZATION
    Wang, Ying
    Takatsuka, Masahiro
    2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2013), 2013,
  • [5] A novel technique for data visualization based on SOM
    Liao, GL
    Shi, TL
    Liu, SY
    Xuan, JP
    ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 421 - 426
  • [6] Using SOM Maps for Clustering and Visualization of Diamond Films Deposited by HFCVD Process
    Pasa, Leandro A.
    Costa, Jose Alfredo F.
    Tosin, Marcelo C.
    Procopio de Paiva, Fabio A.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2012, 2012, 7637 : 140 - 148
  • [7] A SOM-Based Method for Manifold Learning and Visualization
    Shao, Chao
    Zhang, Xinxiang
    Wan, Chunhong
    Shang, Wenqian
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 312 - +
  • [8] Visualization and Interpretation Tool for Expert Systems Based on Fuzzy Cognitive Maps
    Garzon Casado, Alvaro
    Cano Marchal, Pablo
    Gomez Ortega, Juan
    Gamez Garcia, Javier
    IEEE ACCESS, 2019, 7 : 6140 - 6150
  • [9] A SOM based cluster visualization and its application for false coloring
    Himberg, J
    IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL III, 2000, : 587 - 592
  • [10] Visualization of financial data based on SOM and gravitational field clustering
    Liu, Fang
    Tian, Kai
    Zhou, Zhiguang
    Lin, Hai
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2012, 24 (04): : 435 - 442