fLk-Harmonic Maps and fLk-Harmonic Morphisms

被引:0
作者
Mehran Aminian
Mehran Namjoo
机构
[1] Vali-e-Asr University of Rafsanjan,Department of Mathematics
来源
Acta Mathematica Vietnamica | 2021年 / 46卷
关键词
operator; Energy functional; Harmonic map; 58E20; 53C43;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce fLk-energy functionals; and by deriving variations of these functionals, we define fLk-harmonic maps between Riemannian manifolds. Hereafter, by using these definitions, we introduce fLk-harmonic morphisms, and then we find a relation between fLk-harmonic maps and fLk-harmonic morphisms.
引用
收藏
页码:499 / 507
页数:8
相关论文
共 14 条
  • [1] Alías LJ(2006)An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures Geom. Dedicata 121 113-127
  • [2] Gürbüz N(2017)Lk-biharmonic hypersurfaces in space forms Acta. Math. Vietnam. 42 471-490
  • [3] Aminian M(1939)Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques Math. Z. 45 335-367
  • [4] Kashani SMB(1940)Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions Univ. Nac. Tucumá,n. Revista A 1 5-22
  • [5] Cartan É(1964)Harmonic mappings of Riemannian manifolds Am. J. Math. 86 109-160
  • [6] Cartan É(1978)Harmonic morphisms between Riemannian manifolds Ann. Inst. Fourier (Grenoble). 28 107-144
  • [7] Eells J(1979)A mapping of Riemannian manifolds which preserves harmonic functions J. Math. Kyoto Univ. 19 215-229
  • [8] Sampson JH(1986)2-harmonic maps and their first and second variational formulas Chinese Ann. Math. Ser. A 7 389-402
  • [9] Fuglede B(1980)Isoparametrische hyperflächen in sphären I. Math. Ann. 251 51-71
  • [10] Ishihara T(2014)f -harmonic morphisms between Riemannian manifolds Chin. Ann. Math. Ser. B 35 225-236