On boundary behavior of generalized quasi-isometries

被引:0
作者
Denis Kovtonyuk
Vladimir Ryazanov
机构
[1] National Academy of Sciences of Ukraine,Institute of Appliedmathematics and Mechanics
来源
Journal d'Analyse Mathématique | 2011年 / 115卷
关键词
Integral Condition; Quasiconformal Mapping; Boundary Behavior; Uniform Domain; Bound Convex Domain;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a series of criteria for continuous and homeomorphic extension to the boundary of the so-called lower Q-homeomorphisms f between domains in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline {{^n}} = {^{^n}} \cup \{ \infty \} ,n \ge 2$$\end{document}, under integral constraints of the type ∫ Φ(Qn−1(x))dm(x) < ∞ with a convex non-decreasing function Φ: [0,∞]→[0,∞]. Integral conditions on Φ are found that are necessary and sufficient for a continuous extension of f to the boundary. Our results are applied to finitely bi-Lipschitz mappings, which are a far-reaching generalization of isometries as well as quasi-isometries in ℝn. In particular, a generalization and strengthening of the well-known theorem of Gehring-Martio on homeomorphic extension to boundaries of quasi-conformal mappings between QED (quasi-extremal distance) domains is obtained.
引用
收藏
页码:103 / 119
页数:16
相关论文
共 29 条
[1]  
Ahlfors L.(1954)On quasiconformal mappings J. Anal. Math. 3 1-58
[2]  
Biluta P. A.(1965)Extremal problems for mappings which are quasiconformal in the mean Sibirsk. Mat. Zh. 6 717-726
[3]  
Gehring F. W.(1962)Rings and quasiconformal mappings in space Trans. Amer. Math. Soc. 103 353-393
[4]  
Gehring F. W.(1985)Quasiextremal distance domains and extension of quasiconformal mappings J. Anal. Math. 45 181-206
[5]  
Martio O.(2006)On boundaries of space domains Proc. Inst. Appl. Math. Mech. NAS Ukraine 13 110-120
[6]  
Kovtonyuk D.(2008)On the theory of mappings with finite area distortion J. Anal. Math. 104 291-306
[7]  
Ryazanov V.(2008)On the theory of lower Q-homeomorphisms Ukr. Mat. Visn. 5 159-184
[8]  
Kovtonyuk D.(1986)Capacities of condensors and quasiconformal in the mean mappings in space Mat. Sb. 130 185-206
[9]  
Ryazanov V.(1964)On mappings that are quasiconformal in the mean Dokl. Akad. Nauk SSSR 157 517-519
[10]  
Kovtonyuk D.(1984)Behavior of a class of mappings quasiconformal in the mean at an isolated singular point Dokl. Akad. Nauk SSSR 277 1056-1058