One-loop corrections to type IIA string theory in AdS4 × CP3

被引:0
作者
Miguel A. Bandres
Arthur E. Lipstein
机构
[1] California Institute of Technology,
来源
Journal of High Energy Physics | / 2010卷
关键词
AdS-CFT Correspondence; Chern-Simons Theories; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study various methods for computing the one-loop correction to the energy of classical solutions to type IIA string theory in AdS4 × CP3. This involves computing the spectrum of fluctuations and then adding up the fluctuation frequencies. We focus on two classical solutions with support in CP3: a rotating point-particle and a circular spinning string with two angular momenta equal to J. For each of these solutions, we compute the spectrum of fluctuations using two techniques, known as the algebraic curve approach and the world-sheet approach. If we use the same prescription for adding fluctuation frequencies that was used for type IIB string theory in AdS5 × S5, then we find that the world-sheet spectrum gives convergent one-loop corrections but the algebraic curve spectrum gives divergent ones. On the other hand, we find a new summation prescription which gives finite results when applied to both the algebraic curve and world-sheet spectra. Naively, this gives three predictions for the one-loop correction to the spinning string energy (one from the algebraic curve and two from the world-sheet), however we find that in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\text{large}} - \mathcal{J} $\end{document} limit (where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{J} = {J \mathord{\left/{\vphantom {J {\sqrt {2{\pi^2}\lambda } }}} \right.} {\sqrt {2{\pi^2}\lambda } }} $\end{document}), the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{J}^{ - 2n}} $\end{document} terms in all three cases agree. We therefore obtain a unique prediction for the one-loop correction to the spinning string energy.
引用
收藏
相关论文
共 117 条
[11]  
Zarembo K(2009)Green-Schwarz action for type IIA strings on JHEP 03 015-undefined
[12]  
Bak D(2008) × JHEP 10 085-undefined
[13]  
Min H(2005)Superstrings on Nucl. Phys. B 714 3-undefined
[14]  
Rey S-J(2004) × JHEP 05 024-undefined
[15]  
Bena I(2006) as a coset σ-model Commun. Math. Phys. 263 659-undefined
[16]  
Polchinski J(2009)Superstrings on JHEP 02 040-undefined
[17]  
Roiban R(2009) × JHEP 01 016-undefined
[18]  
Stefanski B(2008) from supergravity JHEP 08 001-undefined
[19]  
Arutyunov G(2009)The complete Nucl. Phys. B 810 115-undefined
[20]  
Frolov S(2009) × JHEP 04 066-undefined