One-loop corrections to type IIA string theory in AdS4 × CP3

被引:0
作者
Miguel A. Bandres
Arthur E. Lipstein
机构
[1] California Institute of Technology,
来源
Journal of High Energy Physics | / 2010卷
关键词
AdS-CFT Correspondence; Chern-Simons Theories; Integrable Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study various methods for computing the one-loop correction to the energy of classical solutions to type IIA string theory in AdS4 × CP3. This involves computing the spectrum of fluctuations and then adding up the fluctuation frequencies. We focus on two classical solutions with support in CP3: a rotating point-particle and a circular spinning string with two angular momenta equal to J. For each of these solutions, we compute the spectrum of fluctuations using two techniques, known as the algebraic curve approach and the world-sheet approach. If we use the same prescription for adding fluctuation frequencies that was used for type IIB string theory in AdS5 × S5, then we find that the world-sheet spectrum gives convergent one-loop corrections but the algebraic curve spectrum gives divergent ones. On the other hand, we find a new summation prescription which gives finite results when applied to both the algebraic curve and world-sheet spectra. Naively, this gives three predictions for the one-loop correction to the spinning string energy (one from the algebraic curve and two from the world-sheet), however we find that in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\text{large}} - \mathcal{J} $\end{document} limit (where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{J} = {J \mathord{\left/{\vphantom {J {\sqrt {2{\pi^2}\lambda } }}} \right.} {\sqrt {2{\pi^2}\lambda } }} $\end{document}), the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathcal{J}^{ - 2n}} $\end{document} terms in all three cases agree. We therefore obtain a unique prediction for the one-loop correction to the spinning string energy.
引用
收藏
相关论文
共 117 条
[1]  
Maldacena JM(1998)The large- Adv. Theor. Math. Phys. 2 231-undefined
[2]  
Aharony O(2008) limit of superconformal field theories and supergravity JHEP 10 091-undefined
[3]  
Bergman O(2008)N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals JHEP 09 040-undefined
[4]  
Jafferis DL(2009)The Bethe ansatz for superconformal Chern-Simons J. Phys. A 42 495402-undefined
[5]  
Maldacena J(2009)Two-loop integrability of planar N = 6 superconformal Chern-Simons theory JHEP 03 057-undefined
[6]  
Minahan JA(2010)Two loop integrability for Chern-Simons theories with N = 6 supersymmetry Nucl. Phys. B 827 381-undefined
[7]  
Zarembo K(2004)Generalized dynamical spin chain and 4-loop integrability in N = 6 superconformal Chern-Simons theory Phys. Rev. D 69 046002-undefined
[8]  
Zwiebel BI(2009)Hidden symmetries of the Nucl. Phys. B 808 80-undefined
[9]  
Minahan JA(2008) × JHEP 09 129-undefined
[10]  
Schulgin W(2009) superstring Phys. Rev. D 79 086001-undefined