Automorphism groups of some generalized Cayley graphs

被引:0
作者
Mohsen Alinejad
Kazem Khashyarmanesh
机构
[1] Ferdowsi University of Mashhad,Department of Pure Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2020年 / 69卷
关键词
Automorphism group; Clique number; Cayley graph; Primary 05C69; 05C75; 13A15;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity element. Graph ΓRn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^{n}_{R}$$\end{document} is defined with vertex set Rn\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{n} \setminus \lbrace 0 \rbrace $$\end{document} and two distinct vertices X and Y are adjacent if and only if there exists an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} lower triangular matrix A with non-zero diagonal entries such that AXT=YT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AX^T=Y^T$$\end{document} or AYT=XT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AY^T=X^T$$\end{document}. By BT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B^{T}$$\end{document}, we mean transpose of matrix B. If R is a semigroup with respect to multiplication and n=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,$$\end{document} then ΓR1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^{1}_{R}$$\end{document} is the undirected Cayley graph. In this paper, a prime number p, we find the clique number and automorphism group of ΓRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^{n}_{R},$$\end{document} where R=Zp2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\mathbb {Z}_{p^2}$$\end{document} or R=Zp3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\mathbb {Z}_{p^3}$$\end{document}.
引用
收藏
页码:167 / 174
页数:7
相关论文
共 19 条
[1]  
Afkhami M(2012)Generalized Cayley graphs associated to commutative rings Linear Algebra Appl. 437 1040-1049
[2]  
Khashyarmanesh K(2016)On the generalization of Cayley graphs of commutative rings Beitr. Algebra Geom. 58 395-404
[3]  
Nafar K(2016)Generalized Cayley graphs of upper triangular matrix ring Bull. Korean Math. Soc. 53 1017-1031
[4]  
Afkhami M(2002)On undirected Cayley graphs Australas. J. Combin. 25 73-78
[5]  
Hamidizadeh K(2004)Labelled Cayley graphs and minimal automata Australas. J. Combin. 30 95-101
[6]  
Khashyarmanesh K(2006)On cayley graphs of inverse semigroups Semigroup Forum 72 411-418
[7]  
Afkhami M(2003)On transitive Cayley graphs of groups and semigroups Eur. J. Combin. 24 59-72
[8]  
Hashemifar SH(2009)Cayley graphs as classifiers for data mining: the influence of asymmetries Discrete Math. 309 5360-5369
[9]  
Khashyarmanesh K(2012)Spectral properties of unitary Cayley graphs of finite commutative rings Electron. J. Combin. 19 19-undefined
[10]  
Kelarev AV(undefined)undefined undefined undefined undefined-undefined