Stability of a family of weighted finite-difference schemes

被引:0
作者
Gulin A.V. [1 ]
Mokin A.Yu. [1 ]
机构
[1] Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Scalar Product; Difference Scheme; Positive Root; Root Function; Nonlocal Boundary Condition;
D O I
10.1007/s10598-009-9026-1
中图分类号
学科分类号
摘要
Existence and uniqueness theorems are proved for a weighted finite-difference scheme approximating the heat equation with a nonlocal boundary condition containing a parameter. Bounds are derived that guarantee stability of the solution in the initial values in the mean-square grid norm. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:152 / 172
页数:20
相关论文
共 4 条
[1]  
Gulin A.V., Ionkin N.I., Morozova V.A., Stability of Nonlocal Difference Schemes, (2008)
[2]  
Samarskii A.A., Theory of Finite-Difference Schemes, (1989)
[3]  
Samarskii A.A., Gulin A.V., Stability of Finite-Difference Schemes, (2005)
[4]  
Bari N.K., Biorthogonal systems and bases in a Hilbert space, Uchenye Zapiski MGU, 4-148, pp. 69-107, (1951)