Unsupervised Binary Representation Learning with Deep Variational Networks

被引:4
|
作者
Yuming Shen
Li Liu
Ling Shao
机构
[1] Inception Institute of Artificial Intelligence,
来源
International Journal of Computer Vision | 2019年 / 127卷
关键词
Hashing; Unsupervised learning; Deep learning; Image retrieval;
D O I
暂无
中图分类号
学科分类号
摘要
Learning to hash is regarded as an efficient approach for image retrieval and many other big-data applications. Recently, deep learning frameworks are adopted for image hashing, suggesting an alternative way to formulate the encoding function other than the conventional projections. Although deep learning has been proved to be successful in supervised hashing, existing unsupervised deep hashing techniques still cannot produce leading performance compared with the non-deep methods, as it is hard to unveil the intrinsic structure of the whole sample space by simply regularizing the output codes within each single training batch. To tackle this problem, in this paper, we propose a novel unsupervised deep hashing model, named deep variational binaries (DVB). The conditional auto-encoding variational Bayesian networks are introduced in this work to exploit the feature space structure of the training data using the latent variables. Integrating the probabilistic inference process with hashing objectives, the proposed DVB model estimates the statistics of data representations, and thus produces compact binary codes. Experimental results on three benchmark datasets, i.e., CIFAR-10, SUN-397 and NUS-WIDE, demonstrate that DVB outperforms state-of-the-art unsupervised hashing methods with significant margins.
引用
收藏
页码:1614 / 1628
页数:14
相关论文
共 50 条
  • [21] Unsupervised learning trajectory anomaly detection algorithm based on deep representation
    Wang, Zhongqiu
    Yuan, Guan
    Pei, Haoran
    Zhang, Yanmei
    Liu, Xiao
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2020, 16 (12):
  • [22] Unsupervised Deep Learning for Fault Detection on Spacecraft Using Improved Variational Autoencoder
    Xiang, Gang
    Tao, Ran
    Peng, Yu
    Tian, Kun
    Qu, Chen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5527 - 5531
  • [23] Unsupervised Segmentation of 3D Medical Images Based on Clustering and Deep Representation Learning
    Moriya, Takayasu
    Roth, Holger R.
    Nakamura, Shota
    Oda, Hirohisa
    Nagara, Kai
    Oda, Masahiro
    Mori, Kensaku
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [24] Robust multilayer bootstrap networks in ensemble for unsupervised representation learning and clustering
    Zhang, Xiao-Lei
    Li, Xuelong
    PATTERN RECOGNITION, 2024, 156
  • [25] Supervised versus unsupervised binary-learning by feedforward neural networks
    Japkowicz, N
    MACHINE LEARNING, 2001, 42 (1-2) : 97 - 122
  • [26] Supervised Versus Unsupervised Binary-Learning by Feedforward Neural Networks
    Nathalie Japkowicz
    Machine Learning, 2001, 42 : 97 - 122
  • [27] An Unsupervised Learning Algorithm for Deep Recurrent Spiking Neural Networks
    Du, Pangao
    Lin, Xianghong
    Pi, Xiaomei
    Wang, Xiangwen
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 603 - 607
  • [28] Deep unsupervised network for multimodal perception, representation and classification
    Droniou, Alain
    Ivaldi, Serena
    Sigaud, Olivier
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 71 : 83 - 98
  • [29] An Overview of Unsupervised Deep Feature Representation for Text Categorization
    Wang, Shiping
    Cai, Jinyu
    Lin, Qihao
    Guo, Wenzhong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2019, 6 (03) : 504 - 517
  • [30] IMPROVING DEEP CONVOLUTIONAL NEURAL NETWORKS WITH UNSUPERVISED FEATURE LEARNING
    Kien Nguyen
    Fookes, Clinton
    Sridharan, Sridha
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2270 - 2274