Free bounded archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-algebras

被引:0
作者
G. Bezhanishvili
L. Carai
P. J. Morandi
机构
[1] New Mexico State University,Department of Mathematical Sciences
关键词
Bounded archimedean ; -algebra; Gelfand duality; Free objects; 06F25; 13J25; 06F20; 46A40; 08B20; 54C30;
D O I
10.1007/s10485-021-09637-x
中图分类号
学科分类号
摘要
We show that free objects on sets do not exist in the category baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{ba}}\varvec{\ell }$$\end{document} of bounded archimedean ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-algebras. On the other hand, we introduce the category of weighted sets and prove that free objects on weighted sets do exist in baℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{ba}}\varvec{\ell }$$\end{document}. We conclude by discussing several consequences of this result.
引用
收藏
页码:879 / 888
页数:9
相关论文
共 23 条
  • [1] Adámek J(2006)Abstract and concrete categories: The joy of cats Repr. Theory Appl. Categ. 17 1-507
  • [2] Herrlich H(1968)Free vector lattices Canadian J. Math. 20 58-66
  • [3] Strecker GE(2005)On the function ring functor in pointfree topology Appl. Categ. Struct. 13 305-328
  • [4] Baker KA(1974)Combinatorial aspects of piecewise linear functions J. London Math. Soc. 2 719-727
  • [5] Banaschewski B(2013)Bounded Archimedean Theory Appl. Categ. 28 435-475
  • [6] Beynon WM(2018)-algebras and Gelfand-Neumark-Stone duality Algebra Universalis 79 12-17
  • [7] Bezhanishvili G(1956)Canonical extensions of bounded archimedean vector lattices An. Acad. Brasil. Ci. 28 41-69
  • [8] Morandi PJ(1989)Lattice-ordered rings Rocky Mountain J. Math. 19 651-668
  • [9] Olberding B(1943)On the Pierce-Birkhoff conjecture over ordered fields. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986) Rec. Math. [Mat. Sbornik] N.S. 12(54) 197-213
  • [10] Bezhanishvili G(1961)On the imbedding of normed rings into the ring of operators in Hilbert space Fund. Math. 50 73-94