Hilbert genus fields of real biquadratic fields

被引:0
作者
Yi Ouyang
Zhe Zhang
机构
[1] University of Science and Technology of China,Wu Wen
来源
The Ramanujan Journal | 2015年 / 37卷
关键词
Class group; Hilbert symbol; Hilbert genus field; 11R65; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
The Hilbert genus field of the real biquadratic field K=Q(δ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=\mathbb {Q}(\sqrt{\delta },\sqrt{d})$$\end{document} is described by Yue (Ramanujan J 21:17–25, 2010) and by Bae and Yue (Ramanujan J 24:161–181, 2011) explicitly in the case δ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =2$$\end{document} or p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} with p≡1mod4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1 \, \mathrm{mod}\, 4$$\end{document} a prime and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} a squarefree positive integer. In this article, we describe explicitly the case that δ=p,2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta =p, 2p$$\end{document} or p1p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1p_2$$\end{document} where p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}, p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document}, and p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} are primes congruent to 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document} modulo 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4$$\end{document}, and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} is any squarefree positive integer, thus complete the construction of the Hilbert genus field of real biquadratic field K=K0(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=K_0(\sqrt{d})$$\end{document} such that K0=Q(δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_0=\mathbb {Q}(\sqrt{\delta })$$\end{document} has an odd class number.
引用
收藏
页码:345 / 363
页数:18
相关论文
共 10 条
[1]  
Bae S(2011)Hilbert genus fields of real biquadratic fields Ramanujan J. 24 161-181
[2]  
Yue Q(1995)On imaginary bicyclic biquadratic fields with cyclic 2-class group J. Number Theory 53 88-99
[3]  
McCall TM(1995)Hilbert class fields of real biquadratic fields J. Number Theory 50 154-166
[4]  
Parry CJ(2009)The generalized Rédei matrix Math. Z. 261 23-37
[5]  
Ranalli RR(2010)Genus fields of real biquadratic fields Ramanujan J. 21 17-25
[6]  
Sime P(2014)Fundamental units of real quadratic fields of odd class number J. Number Theory 137 122-129
[7]  
Yue Q(undefined)undefined undefined undefined undefined-undefined
[8]  
Yue Q(undefined)undefined undefined undefined undefined-undefined
[9]  
Zhang Z(undefined)undefined undefined undefined undefined-undefined
[10]  
Yue Q(undefined)undefined undefined undefined undefined-undefined