共 58 条
[1]
Ko K(2019)Prediction of process variation effect for ultrascaled GAA vertical FET devices using a machine learning approach IEEE Trans. Electron Devices 66 4474-4477
[2]
Lee JK(2020)Variability-aware machine learning strategy for 3-D NAND flash memories IEEE Trans. Electron Devices 67 1575-1580
[3]
Kang M(2021)Framework for TCAD augmented machine learning on multi-I-V characteristics using convolutional neural network and multiprocessing J. Semicond. 42 136-139
[4]
Jeon J(2021)Prediction of FinFET current–voltage and capacitance–voltage curves using machine learning with autoencoder IEEE Electron Device Lett. 42 5490-5497
[5]
Shin H(2021)Machine learning aided device simulation of work function fluctuation for multichannel gate-all-around silicon nanosheet MOSFETs IEEE Trans. Electron Devices 68 1366-1369
[6]
Ko K(2019)Machine learning approach for predicting the effect of statistical variability in Si junctionless nanowire transistors IEEE Electron Device Lett. 40 1318-1325
[7]
Lee JK(2021)Artificial neural network-based compact modeling methodology for advanced transistors IEEE Trans. Electron Devices 68 5483-5489
[8]
Shin H(2021)Acceleration of semiconductor device simulation with approximate solutions predicted by trained neural networks IEEE Trans. Electron Devices 68 4181-4188
[9]
Hirtz T(2021)Transistor compact model based on multigradient neural network and its application in spice circuit simulations for gate-all-around Si cold source FETs IEEE Trans. Electron Devices 68 44-49
[10]
Huurman S(2017)Physics-inspired neural networks for efficient device compact modeling IEEE J. Exploratory Solid-State Comput. Devices Circuits 2 422-440