Projecting the one-dimensional Sierpinski gasket

被引:0
|
作者
Richard Kenyon
机构
[1] CNRS UMR 128,
[2] Ecole Normale Superieure de Lyon,undefined
来源
关键词
Lebesgue Measure; Hausdorff Dimension; Edge Label; SIERPINSKI Gasket; Lower Term;
D O I
暂无
中图分类号
学科分类号
摘要
LetS⊂ℝ2 be the Cantor set consisting of points (x,y) which have an expansion in negative powers of 3 using digits {(0,0), (1,0), (0,1)}. We show that the projection ofS in any irrational direction has Lebesgue measure 0. The projection in a rational directionp/q has Hausdorff dimension less than 1 unlessp+q ≡ 0 mod 3, in which case the projection has nonempty interior and measure 1/q. We compute bounds on the dimension of the projection for certain sequences of rational directions, and exhibit a residual set of directions for which the projection has dimension 1.
引用
收藏
页码:221 / 238
页数:17
相关论文
共 50 条
  • [31] Spanning trees on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    Yang, Wei-Shih
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (03) : 649 - 667
  • [32] Eikonal equations on the Sierpinski gasket
    Camilli, Fabio
    Capitanelli, Raffaela
    Marchi, Claudio
    MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 1167 - 1188
  • [33] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [34] Magnetoinductance of a superconducting Sierpinski gasket
    Korshunov, S. E.
    Meyer, R.
    Martinoli, P.
    Physical Review B: Condensed Matter, 51 (09):
  • [35] MAGNETOINDUCTANCE OF A SUPERCONDUCTING SIERPINSKI GASKET
    KORSHUNOV, SE
    MEYER, R
    MARTINOLI, P
    PHYSICAL REVIEW B, 1995, 51 (09): : 5914 - 5926
  • [36] Packing fractal Sierpinski triangles into one-dimensional crystals via a templating method
    Li, Na
    Gu, Gaochen
    Zhang, Xue
    Song, Daoliang
    Zhang, Yajie
    Teo, Boon K.
    Peng, Lian-mao
    Hou, Shimin
    Wang, Yongfeng
    CHEMICAL COMMUNICATIONS, 2017, 53 (24) : 3469 - 3472
  • [37] ACYCLIC ORIENTATIONS ON THE SIERPINSKI GASKET
    Chang, Shu-Chiuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (24):
  • [38] Limit Chains on the Sierpinski Gasket
    Hinz, Michael
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1797 - 1829
  • [39] Gas diffusion in a Sierpinski gasket
    Cao, Liyong
    He, Rong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (05): : 711 - 714
  • [40] Extensions and their Minimizations on the Sierpinski Gasket
    Pak-Hin Li
    Nicholas Ryder
    Robert S. Strichartz
    Baris Evren Ugurcan
    Potential Analysis, 2014, 41 : 1167 - 1201