Projecting the one-dimensional Sierpinski gasket

被引:0
|
作者
Richard Kenyon
机构
[1] CNRS UMR 128,
[2] Ecole Normale Superieure de Lyon,undefined
来源
关键词
Lebesgue Measure; Hausdorff Dimension; Edge Label; SIERPINSKI Gasket; Lower Term;
D O I
暂无
中图分类号
学科分类号
摘要
LetS⊂ℝ2 be the Cantor set consisting of points (x,y) which have an expansion in negative powers of 3 using digits {(0,0), (1,0), (0,1)}. We show that the projection ofS in any irrational direction has Lebesgue measure 0. The projection in a rational directionp/q has Hausdorff dimension less than 1 unlessp+q ≡ 0 mod 3, in which case the projection has nonempty interior and measure 1/q. We compute bounds on the dimension of the projection for certain sequences of rational directions, and exhibit a residual set of directions for which the projection has dimension 1.
引用
收藏
页码:221 / 238
页数:17
相关论文
共 50 条
  • [21] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [22] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    Quantum Information Processing, 2021, 20
  • [23] Sierpinski's ubiquitous gasket
    Stewart, I
    SCIENTIFIC AMERICAN, 1999, 281 (02) : 90 - 91
  • [24] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [25] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [26] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [27] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [28] Photonic bandgaps and resonators in the one-stage Sierpinski gasket basis
    Cooley, D. W.
    Andersen, David R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2007, 24 (10) : A84 - A88
  • [29] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021
  • [30] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119